Commit Graph

1115 Commits

Author SHA1 Message Date
Alex Rickabaugh 42d1091d6a fix(compiler-cli): don't try to tag non-ts files as shims (#36987)
Some projects include .js source files (via the TypeScript allowJs option).
Previously, the compiler would attempt to tag these files for shims, which
caused errors as the regex used to create shim filenames assumes a .ts file.
This commit fixes the bug by filtering out non-ts files during tagging.

PR Close #36987
2020-05-07 14:45:05 -07:00
Pete Bacon Darwin f7815cf96d test(compiler-cli): ensure reflection tests are not brittle to case-sensitivity (#36859)
These tests were matching file-paths against what is retrieved from the
TS compiler. But the TS compiler paths have been canonicalised, so the
tests were brittle on case-insensitive file-systems.

PR Close #36859
2020-05-06 15:23:16 -07:00
Pete Bacon Darwin 9e43e4900e test(compiler-cli): ensure partial-evaluator tests are not brittle to case-sensitivity (#36859)
These tests were matching file-paths against what is retrieved from the
TS compiler. But the TS compiler paths have been canonicalised, so the
tests were brittle on case-insensitive file-systems.

PR Close #36859
2020-05-06 15:23:16 -07:00
Pete Bacon Darwin 8ce38cac0d test(compiler-cli): ensure indexer tests are not brittle to case-sensitivity (#36859)
These tests were matching file-paths against what is retrieved from the
TS compiler. But the TS compiler paths have been canonicalised, so the
tests were brittle on case-insensitive file-systems.

PR Close #36859
2020-05-06 15:23:16 -07:00
Pete Bacon Darwin a10c126692 fix(compiler-cli): use CompilerHost to ensure canonical file paths (#36859)
The type checking infrastrure uses file-paths that may come from the
TS compiler. Such paths will have been canonicalized, and so the type
checking classes must also canonicalize paths when matching.

PR Close #36859
2020-05-06 15:23:16 -07:00
Pete Bacon Darwin b682bd1916 fix(compiler-cli): normalize mock Windows file paths correctly (#36859)
Since the `MockFileSystemWindows` is case-insensitive, any
drive path that must be added to a normalized path should be lower
case to make the path canonical.

PR Close #36859
2020-05-06 15:23:16 -07:00
Pete Bacon Darwin 26eacd4fcb fix(compiler-cli): ensure `MockFileSystem` handles case-sensitivity (#36859)
Previously this class used the file passed in directly to look up files in the
in-memory mock file-system. But this doesn't match the behaviour of
case-insensitive file-systems. Now the look up is done on the canonical
file paths.

PR Close #36859
2020-05-06 15:23:16 -07:00
Pete Bacon Darwin fc4741f638 fix(compiler-cli): `isCaseSensitive()` returns correct value (#36859)
Previously this method was returning the exact opposite value
than the correct one.
Also, calling `this.exists()` causes an infinite recursions,
so the actual file-system `fs.existsSync()` method is used
to ascertain the case-sensitivity of the file-system.

PR Close #36859
2020-05-06 15:23:16 -07:00
Pete Bacon Darwin 3f3e9b7555 fix(compiler-cli): ensure `getRootDirs()` handles case-sensitivity (#36859)
Previously the `getRootDirs()` function was not converting
the root directory paths to their canonical form, which can
cause problems on case-insensitive file-systems.

PR Close #36859
2020-05-06 15:23:16 -07:00
Pete Bacon Darwin 53a8459d5f fix(compiler-cli): ensure LogicalFileSystem handles case-sensitivity (#36859)
The `LogicalFileSystem` was not taking into account the
case-sensitivity of the file-system when caching logical
file paths.

PR Close #36859
2020-05-06 15:23:16 -07:00
Pete Bacon Darwin 0ec0ff3bce fix(compiler-cli): fix case-sensitivity issues in NgtscCompilerHost (#36859)
The `getCanonicalFileName()` method was not actually
calling the  `useCaseSensitiveFileNames()` method. So
it always returned a case-sensitive canonical filename.

PR Close #36859
2020-05-06 15:23:15 -07:00
Paul Gschwendtner 4c92cf43cf feat(compiler-cli): report error if undecorated class with Angular features is discovered (#36921)
Previously in v9, we deprecated the pattern of undecorated base classes
that rely on Angular features. We ran a migration for this in version 9
and will run the same on in version 10 again.

To ensure that projects do not regress and start using the unsupported
pattern again, we report an error in ngtsc if such undecorated classes
are discovered.

We keep the compatibility code enabled in ngcc so that libraries
can be still be consumed, even if they have not been migrated yet.

Resolves FW-2130.

PR Close #36921
2020-05-06 15:06:10 -07:00
Alex Rickabaugh ecffc3557f perf(compiler-cli): perform template type-checking incrementally (#36211)
This optimization builds on a lot of prior work to finally make type-
checking of templates incremental.

Incrementality requires two main components:
- the ability to reuse work from a prior compilation.
- the ability to know when changes in the current program invalidate that
  prior work.

Prior to this commit, on every type-checking pass the compiler would
generate new .ngtypecheck files for each original input file in the program.

1. (Build #1 main program): empty .ngtypecheck files generated for each
   original input file.

2. (Build #1 type-check program): .ngtypecheck contents overridden for those
   which have corresponding components that need type-checked.

3. (Build #2 main program): throw away old .ngtypecheck files and generate
   new empty ones.

4. (Build #2 type-check program): same as step 2.

With this commit, the `IncrementalDriver` now tracks template type-checking
_metadata_ for each input file. The metadata contains information about
source mappings for generated type-checking code, as well as some
diagnostics which were discovered at type-check analysis time. The actual
type-checking code is stored in the TypeScript AST for type-checking files,
which is now re-used between programs as follows:

1. (Build #1 main program): empty .ngtypecheck files generated for each
   original input file.

2. (Build #1 type-check program): .ngtypecheck contents overridden for those
   which have corresponding components that need type-checked, and the
   metadata registered in the `IncrementalDriver`.

3. (Build #2 main program): The `TypeCheckShimGenerator` now reuses _all_
   .ngtypecheck `ts.SourceFile` shims from build #1's type-check program in
   the construction of build #2's main program. Some of the contents of
   these files might be stale (if a component's template changed, for
   example), but wholesale reuse here prevents unnecessary changes in the
   contents of the program at this point and makes TypeScript's job a lot
   easier.

4. (Build #2 type-check program): For those input files which have not
   "logically changed" (meaning components within are semantically the same
   as they were before), the compiler will re-use the type-check file
   metadata from build #1, and _not_ generate a new .ngtypecheck shim.
   For components which have logically changed or where the previous
   .ngtypecheck contents cannot otherwise be reused, code generation happens
   as before.

PR Close #36211
2020-05-05 18:40:42 -07:00
Alex Rickabaugh b861e9c0ac perf(compiler-cli): split Ivy template type-checking into multiple files (#36211)
As a performance optimization, this commit splits the single
__ngtypecheck__.ts file which was previously added to the user's program as
a container for all template type-checking code into multiple .ngtypecheck
shim files, one for each original file in the user's program.

In larger applications, the generation, parsing, and checking of this single
type-checking file was a huge performance bottleneck, with the file often
exceeding 1 MB in text content. Particularly in incremental builds,
regenerating this single file for the entire application proved especially
expensive.

This commit introduces a new strategy for template type-checking code which
makes use of a new interface, the `TypeCheckingProgramStrategy`. This
interface abstracts the process of creating a new `ts.Program` to type-check
a particular compilation, and allows the mechanism there to be kept separate
from the more complex logic around dealing with multiple .ngtypecheck files.

A new `TemplateTypeChecker` hosts that logic and interacts with the
`TypeCheckingProgramStrategy` to actually generate and return diagnostics.
The `TypeCheckContext` class, previously the workhorse of template type-
checking, is now solely focused on collecting and generating type-checking
file contents.

A side effect of implementing the new `TypeCheckingProgramStrategy` in this
way is that the API is designed to be suitable for use by the Angular
Language Service as well. The LS also needs to type-check components, but
has its own method for constructing a `ts.Program` with type-checking code.

Note that this commit does not make the actual checking of templates at all
_incremental_ just yet. That will happen in a future commit.

PR Close #36211
2020-05-05 18:40:42 -07:00
Alex Rickabaugh 4213e8d5f0 fix(compiler): switch to 'referencedFiles' for shim generation (#36211)
Shim generation was built on a lie.

Shims are files added to the program which aren't original files authored by
the user, but files authored effectively by the compiler. These fall into
two categories: files which will be generated (like the .ngfactory shims we
generate for View Engine compatibility) as well as files used internally in
compilation (like the __ng_typecheck__.ts file).

Previously, shim generation was driven by the `rootFiles` passed to the
compiler as input. These are effectively the `files` listed in the
`tsconfig.json`. Each shim generator (e.g. the `FactoryGenerator`) would
examine the `rootFiles` and produce a list of shim file names which it would
be responsible for generating. These names would then be added to the
`rootFiles` when the program was created.

The fatal flaw here is that `rootFiles` does not always account for all of
the files in the program. In fact, it's quite rare that it does. Users don't
typically specify every file directly in `files`. Instead, they rely on
TypeScript, during program creation, starting with a few root files and
transitively discovering all of the files in the program.

This happens, however, during `ts.createProgram`, which is too late to add
new files to the `rootFiles` list.

As a result, shim generation was only including shims for files actually
listed in the `tsconfig.json` file, and not for the transitive set of files
in the user's program as it should.

This commit completely rewrites shim generation to use a different technique
for adding files to the program, inspired by View Engine's shim generator.
In this new technique, as the program is being created and `ts.SourceFile`s
are being requested from the `NgCompilerHost`, shims for those files are
generated and a reference to them is patched onto the original file's
`ts.SourceFile.referencedFiles`. This causes TS to think that the original
file references the shim, and causes the shim to be included in the program.
The original `referencedFiles` array is saved and restored after program
creation, hiding this little hack from the rest of the system.

The new shim generation engine differentiates between two kinds of shims:
top-level shims (such as the flat module entrypoint file and
__ng_typecheck__.ts) and per-file shims such as ngfactory or ngsummary
files. The former are included via `rootFiles` as before, the latter are
included via the `referencedFiles` of their corresponding original files.

As a result of this change, shims are now correctly generated for all files
in the program, not just the ones named in `tsconfig.json`.

A few mitigating factors prevented this bug from being realized until now:

* in g3, `files` does include the transitive closure of files in the program
* in CLI apps, shims are not really used

This change also makes use of a novel technique for associating information
with source files: the use of an `NgExtension` `Symbol` to patch the
information directly onto the AST object. This is used in several
circumstances:

* For shims, metadata about a `ts.SourceFile`'s status as a shim and its
  origins are held in the extension data.
* For original files, the original `referencedFiles` are stashed in the
  extension data for later restoration.

The main benefit of this technique is a lot less bookkeeping around `Map`s
of `ts.SourceFile`s to various kinds of data, which need to be tracked/
invalidated as part of incremental builds.

This technique is based on designs used internally in the TypeScript
compiler and is serving as a prototype of this design in ngtsc. If it works
well, it could have benefits across the rest of the compiler.

PR Close #36211
2020-05-05 18:40:42 -07:00
Alex Rickabaugh bab90a7709 fix(compiler-cli): fix bug tracking indirect NgModule dependencies (#36211)
The compiler needs to track the dependencies of a component, including any
NgModules which happen to be present in a component's scope. If an upstream
NgModule changes, any downstream components need to have their templates
re-compiled and re-typechecked.

Previously, the compiler handled this well for the A -> B -> C case where
module A imports module B which re-exports module C. However, it fell apart
in the A -> B -> C -> D case, because previously tracking focused on changes
to components/directives in the scope, and not NgModules specifically.

This commit introduces logic to track which NgModules contributed to a given
scope, and treat them as dependencies of any components within.

This logic also contains a bug, which is intentional for now. It
purposefully does not track transitive dependencies of the NgModules which
contribute to a scope. If it did, using the current dependency system, this
would treat all components and directives (even those not exported into the
scope) as dependencies, causing a major performance bottleneck. Only those
dependencies which contributed to the module's export scope should be
considered, but the current system is incapable of making this distinction.
This will be fixed at a later date.

PR Close #36211
2020-05-05 18:40:42 -07:00
Andrew Scott fbd281c26e build: remove typescript 3.6 and 3.7 support (#36329)
Remove TypeScript 3.6 and 3.7 support from Angular along with tests that
ensure those TS versions work.

BREAKING CHANGE: typescript 3.6 and 3.7 are no longer supported, please
update to typescript 3.8

PR Close #36329
2020-05-05 16:52:43 -07:00
JoostK 89c589085d fix(ngcc): recognize enum declarations emitted in JavaScript (#36550)
An enum declaration in TypeScript code will be emitted into JavaScript
as a regular variable declaration, with the enum members being declared
inside an IIFE. For ngcc to support interpreting such variable
declarations as enum declarations with its members, ngcc needs to
recognize the enum declaration emit structure and extract all member
from the statements in the IIFE.

This commit extends the `ConcreteDeclaration` structure in the
`ReflectionHost` abstraction to be able to capture the enum members
on a variable declaration, as a substitute for the original
`ts.EnumDeclaration` as it existed in TypeScript code. The static
interpreter has been extended to handle the extracted enum members
as it would have done for `ts.EnumDeclaration`.

Fixes #35584
Resolves FW-2069

PR Close #36550
2020-04-28 15:59:57 -07:00
Pete Bacon Darwin 70dd27ffd8 fix(compiler): normalize line endings in ICU expansions (#36741)
The html parser already normalizes line endings (converting `\r\n` to `\n`)
for most text in templates but it was missing the expressions of ICU expansions.

In ViewEngine backticked literal strings, used to define inline templates,
were already normalized by the TypeScript parser.
In Ivy we are parsing the raw text of the source file directly so the line
endings need to be manually normalized.

This change ensures that inline templates have the line endings of ICU
expression normalized correctly, which matches the ViewEngine.

In ViewEngine external templates, defined in HTML files, the behavior was
different, since TypeScript was not normalizing the line endings.
Specifically, ICU expansion "expressions" are not being normalized.
This is a problem because it means that i18n message ids can be different on
different machines that are setup with different line ending handling,
or if the developer moves a template from inline to external or vice versa.

The goal is always to normalize line endings, whether inline or external.
But this would be a breaking change since it would change i18n message ids
that have been previously computed. Therefore this commit aligns the ivy
template parsing to have the same "buggy" behavior for external templates.

There is now a compiler option `i18nNormalizeLineEndingsInICUs`, which
if set to `true` will ensure the correct non-buggy behavior. For the time
being this option defaults to `false` to ensure backward compatibility while
allowing opt-in to the desired behavior. This option's default will be
flipped in a future breaking change release.

Further, when this option is set to `false`, any ICU expression tokens,
which have not been normalized, are added to the `ParseResult` from the
`HtmlParser.parse()` method. In the future, this collection of tokens could
be used to diagnose and encourage developers to migrate their i18n message
ids. See FW-2106.

Closes #36725

PR Close #36741
2020-04-28 12:22:40 -07:00
Pete Bacon Darwin 351759906b refactor(compiler): remove unused CachedFileSystem (#36687)
This was only being used by ngcc but not any longer.

PR Close #36687
2020-04-17 16:33:48 -04:00
JoostK 4aa4e6fd03 fix(compiler): handle type references to namespaced symbols correctly (#36106)
When the compiler needs to convert a type reference to a value
expression, it may encounter a type that refers to a namespaced symbol.
Such namespaces need to be handled specially as there's various forms
available. Consider a namespace named "ns":

1. One can refer to a namespace by itself: `ns`. A namespace is only
   allowed to be used in a type position if it has been merged with a
   class, but even if this is the case it may not be possible to convert
   that type into a value expression depending on the import form. More
   on this later (case a below)
2. One can refer to a type within the namespace: `ns.Foo`. An import
   needs to be generated to `ns`, from which the `Foo` property can then
   be read.
3. One can refer to a type in a nested namespace within `ns`:
   `ns.Foo.Bar` and possibly even deeper nested. The value
   representation is similar to case 2, but includes additional property
   accesses.

The exact strategy of how to deal with these cases depends on the type
of import used. There's two flavors available:

a. A namespaced import like `import * as ns from 'ns';` that creates
   a local namespace that is irrelevant to the import that needs to be
   generated (as said import would be used instead of the original
   import).

   If the local namespace "ns" itself is referred to in a type position,
   it is invalid to convert it into a value expression. Some JavaScript
   libraries publish a value as default export using `export = MyClass;`
   syntax, however it is illegal to refer to that value using "ns".
   Consequently, such usage in a type position *must* be accompanied by
   an `@Inject` decorator to provide an explicit token.

b. An explicit namespace declaration within a module, that can be
   imported using a named import like `import {ns} from 'ns';` where the
   "ns" module declares a namespace using `declare namespace ns {}`.
   In this case, it's the namespace itself that needs to be imported,
   after which any qualified references into the namespace are converted
   into property accesses.

Before this change, support for namespaces in the type-to-value
conversion was limited and only worked  correctly for a single qualified
name using a namespace import (case 2a). All other cases were either
producing incorrect code or would crash the compiler (case 1a).

Crashing the compiler is not desirable as it does not indicate where
the issue is. Moreover, the result of a type-to-value conversion is
irrelevant when an explicit injection token is provided using `@Inject`,
so referring to a namespace in a type position (case 1) could still be
valid.

This commit introduces logic to the type-to-value conversion to be able
to properly deal with all type references to namespaced symbols.

Fixes #36006
Resolves FW-1995

PR Close #36106
2020-04-09 11:32:21 -07:00
Alex Rickabaugh 0a69a2832b style(compiler-cli): reformat of codebase with new clang-format version (#36520)
This commit reformats the packages/compiler-cli tree using the new version
of clang-format.

PR Close #36520
2020-04-08 14:51:08 -07:00
JiaLiPassion 41667de778 fix(zone.js): add issue numbers of `@types/jasmine` to the test cases (#34625)
Some cases will still need to use `spy as any` cast, because `@types/jasmine` have some issues,
1. The issue jasmine doesn't handle optional method properties, https://github.com/DefinitelyTyped/DefinitelyTyped/issues/43486
2. The issue jasmine doesn't handle overload method correctly, https://github.com/DefinitelyTyped/DefinitelyTyped/issues/42455

PR Close #34625
2020-04-08 12:10:34 -07:00
JiaLiPassion ef4736d052 build: update jasmine to 3.5 (#34625)
1. update jasmine to 3.5
2. update @types/jasmine to 3.5
3. update @types/jasminewd2 to 2.0.8

Also fix several cases, the new jasmine 3 will help to create test cases correctly,
such as in the `jasmine 2.x` version, the following case will pass

```
expect(1 == 2);
```

But in jsamine 3, the case will need to be

```
expect(1 == 2).toBeTrue();
```

PR Close #34625
2020-04-08 12:10:34 -07:00
JoostK 64022f51d4 fix(compiler): resolve enum values in binary operations (#36461)
During static evaluation of expressions, the partial evaluator
may come across a binary + operator for which it needs to
evaluate its operands. Any of these operands may be a reference
to an enum member, in which case the enum member's value needs
to be used as literal value, not the enum member reference
itself. This commit fixes the behavior by resolving an
`EnumValue` when used as a literal value.

Fixes #35584
Resolves FW-1951

PR Close #36461
2020-04-07 15:21:51 -07:00
JoostK f9f6e2e1b3 style(compiler): reformat partial evaluator source tree (#36461)
PR Close #36461
2020-04-07 15:21:51 -07:00
George Kalpakas aecf9de738 fix(ngcc): correctly identify relative Windows-style import paths (#36372)
Previously, `isRelativePath()` assumed paths are *nix-style. This caused
Windows-style paths (such as `C:\foo\some-package\some-file.js`) to not
be recognized as "relative" imports.

This commit fixes this by using the OS-agnostic `isRooted()` helper and
also accounting for both styles of path delimiters: `/` and `\`

PR Close #36372
2020-04-07 15:21:27 -07:00
Ayaz Hafiz e893c5a330 fix(compiler-cli): pass real source spans where they are empty (#31805)
Some consumers of functions that take `ParseSourceSpan`s currently pass
empty and incorrect source spans. This fixes those cases.

PR Close #31805
2020-04-06 09:28:27 -07:00
JoostK 75afd80ae8 refactor(compiler): add `@nocollapse` annotation using a synthetic comment (#35932)
In Ivy, Angular decorators are compiled into static fields that are
inserted into a class declaration in a TypeScript transform. When
targeting Closure compiler such fields need to be annotated with
`@nocollapse` to prevent them from being lifted from a static field into
a variable, as that would prevent the Ivy runtime from being able to
find the compiled definitions.

Previously, there was a bug in TypeScript where synthetic comments added
in a transform would not be emitted at all, so as a workaround a global
regex-replace was done in the emit's `writeFile` callback that would add
the `@nocollapse` annotation to all static Ivy definition fields. This
approach is no longer possible when ngtsc is running as TypeScript
plugin, as a plugin cannot control emit behavior.

The workaround is no longer necessary, as synthetic comments are now
properly emitted, likely as of
https://github.com/microsoft/TypeScript/pull/22141 which has been
released with TypeScript 2.8.

This change is required for running ngtsc as TypeScript plugin in
Bazel's `ts_library` rule, to move away from the custom `ngc_wrapped`
approach.

Resolves FW-1952

PR Close #35932
2020-04-01 15:37:06 -07:00
JoostK 32ce8b1326 feat(compiler): add dependency info and ng-content selectors to metadata (#35695)
This commit augments the `FactoryDef` declaration of Angular decorated
classes to contain information about the parameter decorators used in
the constructor. If no constructor is present, or none of the parameters
have any Angular decorators, then this will be represented using the
`null` type. Otherwise, a tuple type is used where the entry at index `i`
corresponds with parameter `i`. Each tuple entry can be one of two types:

1. If the associated parameter does not have any Angular decorators,
   the tuple entry will be the `null` type.
2. Otherwise, a type literal is used that may declare at least one of
   the following properties:
   - "attribute": if `@Attribute` is present. The injected attribute's
   name is used as string literal type, or the `unknown` type if the
   attribute name is not a string literal.
   - "self": if `@Self` is present, always of type `true`.
   - "skipSelf": if `@SkipSelf` is present, always of type `true`.
   - "host": if `@Host` is present, always of type `true`.
   - "optional": if `@Optional` is present, always of type `true`.

   A property is only present if the corresponding decorator is used.

   Note that the `@Inject` decorator is currently not included, as it's
   non-trivial to properly convert the token's value expression to a
   type that is valid in a declaration file.

Additionally, the `ComponentDefWithMeta` declaration that is created for
Angular components has been extended to include all selectors on
`ng-content` elements within the component's template.

This additional metadata is useful for tooling such as the Angular
Language Service, as it provides the ability to offer suggestions for
directives/components defined in libraries. At the moment, such
tooling extracts the necessary information from the _metadata.json_
manifest file as generated by ngc, however this metadata representation
is being replaced by the information emitted into the declaration files.

Resolves FW-1870

PR Close #35695
2020-03-24 14:21:42 -07:00
ayazhafiz df890d7629 fix(compiler): record correct end of expression (#34690)
This commit fixes a bug with the expression parser wherein the end index
of an expression node was recorded as the start index of the next token,
not the end index of the current token.

Closes #33477
Closes https://github.com/angular/vscode-ng-language-service/issues/433

PR Close #34690
2020-03-20 10:19:02 -07:00
Alex Rickabaugh e3ecdc6a63 feat(bazel): transform generated shims (in Ivy) with tsickle (#35975)
Currently, when Angular code is built with Bazel and with Ivy, generated
factory shims (.ngfactory files) are not processed via the majority of
tsickle's transforms. This is a subtle effect of the build infrastructure,
but it boils down to a TsickleHost method `shouldSkipTsickleProcessing`.

For ngc_wrapped builds (Bazel + Angular), this method is defined in the
`@bazel/typescript` (aka bazel rules_typescript) implementation of
`CompilerHost`. The default behavior is to skip tsickle processing for files
which are not present in the original `srcs[]` of the build rule. In
Angular's case, this includes all generated shim files.

For View Engine factories this is probably desirable as they're quite
complex and they've never been tested with tsickle. Ivy factories however
are smaller and very straightforward, and it makes sense to treat them like
any other output.

This commit adjusts two independent implementations of
`shouldSkipTsickleProcessing` to enable transformation of Ivy shims:

* in `@angular/bazel` aka ngc_wrapped, the upstream `@bazel/typescript`
  `CompilerHost` is patched to treat .ngfactory files the same as their
  original source file, with respect to tsickle processing.

  It is currently not possible to test this change as we don't have any test
  that inspects tsickle output with bazel. It will be extensively tested in
  g3.

* in `ngc`, Angular's own implementation is adjusted to allow for the
  processing of shims when compiling with Ivy. This enables a unit test to
  be written to validate the correct behavior of tsickle when given a host
  that's appropriately configured to process factory shims.

For ngtsc-as-a-plugin, a similar fix will need to be submitted upstream in
tsc_wrapped.

PR Close #35848

PR Close #35975
2020-03-17 10:17:28 -07:00
Alex Rickabaugh 95c729f5d1 build: typescript 3.8 support (#35864)
This commit adds support in the Angular monorepo and in the Angular
compiler(s) for TypeScript 3.8. All packages can now compile with
TS 3.8.

For most of the repo, only a handful few typings adjustments were needed:

* TS 3.8 has a new `CustomElementConstructor` DOM type, which enforces a
  zero-argument constructor. The `NgElementConstructor` type previously
  declared a required `injector` argument despite the fact that its
  implementation allowed `injector` to be optional. The interface type was
  updated to reflect the optionality of the argument.
* Certain error messages were changed, and expectations in tests were
  updated as a result.
* tsserver (part of language server) now returns performance information in
  responses, so test expectations were changed to only assert on the actual
  body content of responses.

For compiler-cli and schematics (which use the TypeScript AST) a major
breaking change was the introduction of the export form:

```typescript
export * as foo from 'bar';
```

This is a `ts.NamespaceExport`, and the `exportClause` of a
`ts.ExportDeclaration` can now take this type as well as `ts.NamedExports`.
This broke a lot of places where `exportClause` was assumed to be
`ts.NamedExports`.

For the most part these breakages were in cases where it is not necessary
to handle the new `ts.NamedExports` anyway. ngtsc's design uses the
`ts.TypeChecker` APIs to understand syntax and so automatically supports the
new form of exports.

The View Engine compiler on the other hand extracts TS structures into
metadata.json files, and that format was not designed for namespaced
exports. As a result it will take a nontrivial amount of work if we want to
support such exports in View Engine. For now, these new exports are not
accounted for in metadata.json, and so using them in "folded" Angular
expressions will result in errors (probably claiming that the referenced
exported namespace doesn't exist).

Care was taken to only use TS APIs which are present in 3.7/3.6, as Angular
needs to remain compatible with these for the time being.

This commit does not update angular.io.

PR Close #35864
2020-03-10 17:51:20 -04:00
Andrew Kushnir 0bf6e58db2 fix(compiler): process `imports` first and `declarations` second while calculating scopes (#35850)
Prior to this commit, while calculating the scope for a module, Ivy compiler processed `declarations` field first and `imports` after that. That results in a couple issues:

* for Pipes with the same `name` and present in `declarations` and in an imported module, Pipe from imported module was selected. In View Engine the logic is opposite: Pipes from `declarations` field receive higher priority.
* for Directives with the same selector and present in `declarations` and in an imported module, we first invoked the logic of a Directive from `declarations` field and after that - imported Directive logic. In View Engine, it was the opposite and the logic of a Directive from the `declarations` field was invoked last.

In order to align Ivy and View Engine behavior, this commit updates the logic in which we populate module scope: we first process all imports and after that handle `declarations` field. As a result, in Ivy both use-cases listed above work similar to View Engine.

Resolves #35502.

PR Close #35850
2020-03-10 14:16:59 -04:00
Alex Rickabaugh 983f48136a test(compiler): add a public API guard for the public compiler options (#35885)
This commit adds a public API test which guards against unintentional
changes to the accepted keys in `angularCompilerOptions`.

PR Close #35885
2020-03-10 14:15:28 -04:00
Alex Rickabaugh edf881dbf1 refactor(compiler): split core/api.ts into multiple files (#35885)
This commit splits the ngtsc `core` package's api entrypoint, which
previously was a single `api.ts` file, into an api/ directory with multiple
files. This is done to isolate the parts of the API definitions pertaining
to the public-facing `angularCompilerOptions` field in tsconfig.json into a
single file, which will enable a public API guard test to be added in a
future commit.

PR Close #35885
2020-03-10 14:15:28 -04:00
Matias Niemelä 15482e7367 Revert "feat(bazel): transform generated shims (in Ivy) with tsickle (#35848)" (#35970)
This reverts commit 9ff9a072e6.

PR Close #35970
2020-03-09 17:00:14 -04:00
Alex Rickabaugh 9ff9a072e6 feat(bazel): transform generated shims (in Ivy) with tsickle (#35848)
Currently, when Angular code is built with Bazel and with Ivy, generated
factory shims (.ngfactory files) are not processed via the majority of
tsickle's transforms. This is a subtle effect of the build infrastructure,
but it boils down to a TsickleHost method `shouldSkipTsickleProcessing`.

For ngc_wrapped builds (Bazel + Angular), this method is defined in the
`@bazel/typescript` (aka bazel rules_typescript) implementation of
`CompilerHost`. The default behavior is to skip tsickle processing for files
which are not present in the original `srcs[]` of the build rule. In
Angular's case, this includes all generated shim files.

For View Engine factories this is probably desirable as they're quite
complex and they've never been tested with tsickle. Ivy factories however
are smaller and very straightforward, and it makes sense to treat them like
any other output.

This commit adjusts two independent implementations of
`shouldSkipTsickleProcessing` to enable transformation of Ivy shims:

* in `@angular/bazel` aka ngc_wrapped, the upstream `@bazel/typescript`
  `CompilerHost` is patched to treat .ngfactory files the same as their
  original source file, with respect to tsickle processing.

  It is currently not possible to test this change as we don't have any test
  that inspects tsickle output with bazel. It will be extensively tested in
  g3.

* in `ngc`, Angular's own implementation is adjusted to allow for the
  processing of shims when compiling with Ivy. This enables a unit test to
  be written to validate the correct behavior of tsickle when given a host
  that's appropriately configured to process factory shims.

For ngtsc-as-a-plugin, a similar fix will need to be submitted upstream in
tsc_wrapped.

PR Close #35848
2020-03-09 13:06:33 -04:00
Yiting Wang c296bfcaf9 fix(compiler-cli): suppress extraRequire errors in Closure Compiler (#35737)
This is needed to support https://github.com/angular/tsickle/pull/1133
because it will add an extra require on `tslib`.

PR Close #35737
2020-03-04 08:37:03 -08:00
Alex Rickabaugh 2c41bb8490 fix(compiler): type-checking error for duplicate variables in templates (#35674)
It's an error to declare a variable twice on a specific template:

```html
<div *ngFor="let i of items; let i = index">
</div>
```

This commit introduces a template type-checking error which helps to detect
and diagnose this problem.

Fixes #35186

PR Close #35674
2020-03-03 13:52:50 -08:00
JoostK 3e3a1ef30d fix(ivy): support dynamic query tokens in AOT mode (#35307)
For view and content queries, the Ivy compiler attempts to statically
evaluate the predicate token so that string predicates containing
comma-separated reference names can be split into an array of strings
during compilation. When the predicate is a dynamic value that cannot be
statically interpreted at compile time, the compiler would previously
produce an error. This behavior breaks a use-case where an `InjectionToken`
is being used as query predicate, as the usage of the `new` keyword
prevents such predicates from being statically evaluated.

This commit changes the behavior to no longer produce an error for
dynamic values. Instead, the expression is emitted as is into the
generated code, postponing the evaluation to happen at runtime.

Fixes #34267
Resolves FW-1828

PR Close #35307
2020-02-27 16:05:21 -08:00
Alex Rickabaugh 173a1ac8e4 fix(ivy): better inference for circularly referenced directive types (#35622)
It's possible to pass a directive as an input to itself. Consider:

```html
<some-cmp #ref [value]="ref">
```

Since the template type-checker attempts to infer a type for `<some-cmp>`
using the values of its inputs, this creates a circular reference where the
type of the `value` input is used in its own inference:

```typescript
var _t0 = SomeCmp.ngTypeCtor({value: _t0});
```

Obviously, this doesn't work. To resolve this, the template type-checker
used to generate a `null!` expression when a reference would otherwise be
circular:

```typescript
var _t0 = SomeCmp.ngTypeCtor({value: null!});
```

This effectively asks TypeScript to infer a value for this context, and
works well to resolve this simple cycle. However, if the template
instead tries to use the circular value in a larger expression:

```html
<some-cmp #ref [value]="ref.prop">
```

The checker would generate:

```typescript
var _t0 = SomeCmp.ngTypeCtor({value: (null!).prop});
```

In this case, TypeScript can't figure out any way `null!` could have a
`prop` key, and so it infers `never` as the type. `(never).prop` is thus a
type error.

This commit implements a better fallback pattern for circular references to
directive types like this. Instead of generating a `null!` in place for the
reference, a type is inferred by calling the type constructor again with
`null!` as its input. This infers the widest possible type for the directive
which is then used to break the cycle:

```typescript
var _t0 = SomeCmp.ngTypeCtor(null!);
var _t1 = SomeCmp.ngTypeCtor({value: _t0.prop});
```

This has the desired effect of validating that `.prop` is legal for the
directive type (the type of `#ref`) while also avoiding a cycle.

Fixes #35372
Fixes #35603
Fixes #35522

PR Close #35622
2020-02-26 12:57:08 -08:00
Alex Rickabaugh 2d89b5d13d fix(ivy): provide a more detailed error message for NG6002/NG6003 (#35620)
NG6002/NG6003 are errors produced when an NgModule being compiled has an
imported or exported type which does not have the proper metadata (that is,
it doesn't appear to be an @NgModule, or @Directive, etc. depending on
context).

Previously this error message was a bit sparse. However, Github issues show
that this is the most common error users receive when for whatever reason
ngcc wasn't able to handle one of their libraries, or they just didn't run
it. So this commit changes the error message to offer a bit more useful
context, instructing users differently depending on whether the class in
question is from their own project, from NPM, or from a monorepo-style local
dependency.

PR Close #35620
2020-02-26 12:56:47 -08:00
Alex Eagle af76651ccc refactor: update tscplugin api to match google3 (#35455)
PR Close #35455
2020-02-24 17:29:33 -08:00
Alex Rickabaugh 4253662231 fix(ivy): add strictLiteralTypes to align Ivy + VE checking of literals (#35462)
Under View Engine's default (non-fullTemplateTypeCheck) checking, object and
array literals which appear in templates are treated as having type `any`.
This allows a number of patterns which would not otherwise compile, such as
indexing an object literal by a string:

```html
{{ {'a': 1, 'b': 2}[value] }}
```

(where `value` is `string`)

Ivy, meanwhile, has always inferred strong types for object literals, even
in its compatibility mode. This commit fixes the bug, and adds the
`strictLiteralTypes` flag to specifically control this inference. When the
flag is `false` (in compatibility mode), object and array literals receive
the `any` type.

PR Close #35462
2020-02-21 12:36:11 -08:00
Alex Rickabaugh a61fe4177f fix(ivy): emulate a View Engine type-checking bug with safe navigation (#35462)
In its default compatibility mode, the Ivy template type-checker attempts to
emulate the View Engine default mode as accurately as is possible. This
commit addresses a gap in this compatibility that stems from a View Engine
type-checking bug.

Consider two template expressions:

```html
{{ obj?.field }}
{{ fn()?.field }}
```

and suppose that the type of `obj` and `fn()` are the same - both return
either `null` or an object with a `field` property.

Under View Engine, these type-check differently. The `obj` case will catch
if the object type (when not null) does not have a `field` property, while
the `fn()` case will not. This is due to how View Engine represents safe
navigations:

```typescript
// for the 'obj' case
(obj == null ? null as any : obj.field)

// for the 'fn()' case
let tmp: any;
((tmp = fn()) == null ? null as any : tmp.field)
```

Because View Engine uses the same code generation backend as it does to
produce the runtime code for this expression, it uses a ternary for safe
navigation, with a temporary variable to avoid invoking 'fn()' twice. The
type of this temporary variable is 'any', however, which causes the
`tmp.field` check to be meaningless.

Previously, the Ivy template type-checker in compatibility mode assumed that
`fn()?.field` would always check for the presence of 'field' on the non-null
result of `fn()`. This commit emulates the View Engine bug in Ivy's
compatibility mode, so an 'any' type will be inferred under the same
conditions.

As part of this fix, a new format for safe navigation operations in template
type-checking code is introduced. This is based on the realization that
ternary based narrowing is unnecessary.

For the `fn()` case in strict mode, Ivy now generates:

```typescript
(null as any ? fn()!.field : undefined)
```

This effectively uses the ternary operator as a type "or" operation. The
resulting type will be a union of the type of `fn()!.field` with
`undefined`.

For the `fn()` case in compatibility mode, Ivy now emulates the bug with:

```typescript
(fn() as any).field
```

The cast expression includes the call to `fn()` and allows it to be checked
while still returning a type of `any` from the expression.

For the `obj` case in compatibility mode, Ivy now generates:

```typescript
(obj!.field as any)
```

This cast expression still returns `any` for its type, but will check for
the existence of `field` on the type of `obj!`.

PR Close #35462
2020-02-21 12:36:11 -08:00
George Kalpakas bd6a39c364 fix(ngcc): correctly detect emitted TS helpers in ES5 (#35191)
In ES5 code, TypeScript requires certain helpers (such as
`__spreadArrays()`) to be able to support ES2015+ features. These
helpers can be either imported from `tslib` (by setting the
`importHelpers` TS compiler option to `true`) or emitted inline (by
setting the `importHelpers` and `noEmitHelpers` TS compiler options to
`false`, which is the default value for both).

Ngtsc's `StaticInterpreter` (which is also used during ngcc processing)
is able to statically evaluate some of these helpers (currently
`__assign()`, `__spread()` and `__spreadArrays()`), as long as
`ReflectionHost#getDefinitionOfFunction()` correctly detects the
declaration of the helper. For this to happen, the left-hand side of the
corresponding call expression (i.e. `__spread(...)` or
`tslib.__spread(...)`) must be evaluated as a function declaration for
`getDefinitionOfFunction()` to be called with.

In the case of imported helpers, the `tslib.__someHelper` expression was
resolved to a function declaration of the form
`export declare function __someHelper(...args: any[][]): any[];`, which
allows `getDefinitionOfFunction()` to correctly map it to a TS helper.

In contrast, in the case of emitted helpers (and regardless of the
module format: `CommonJS`, `ESNext`, `UMD`, etc.)), the `__someHelper`
identifier was resolved to a variable declaration of the form
`var __someHelper = (this && this.__someHelper) || function () { ... }`,
which upon further evaluation was categorized as a `DynamicValue`
(prohibiting further evaluation by the `getDefinitionOfFunction()`).

As a result of the above, emitted TypeScript helpers were not evaluated
in ES5 code.

---
This commit changes the detection of TS helpers to leverage the existing
`KnownFn` feature (previously only used for built-in functions).
`Esm5ReflectionHost` is changed to always return `KnownDeclaration`s for
TS helpers, both imported (`getExportsOfModule()`) as well as emitted
(`getDeclarationOfIdentifier()`).

Similar changes are made to `CommonJsReflectionHost` and
`UmdReflectionHost`.

The `KnownDeclaration`s are then mapped to `KnownFn`s in
`StaticInterpreter`, allowing it to statically evaluate call expressions
involving any kind of TS helpers.

Jira issue: https://angular-team.atlassian.net/browse/FW-1689

PR Close #35191
2020-02-21 09:06:46 -08:00
George Kalpakas 14744f27c5 refactor(compiler-cli): rename the `BuiltinFn` type to the more generic `KnownFn` (#35191)
This is in preparation of using the `KnownFn` type for known TypeScript
helpers (in addition to built-in functions/methods). This will in turn
allow simplifying the detection of both imported and emitted TypeScript
helpers.

PR Close #35191
2020-02-21 09:06:46 -08:00
Andrew Kushnir 646655d09a fix(compiler): use FatalDiagnosticError to generate better error messages (#35244)
Prior to this commit, decorator handling logic in Ngtsc used `Error` to throw errors. This commit replaces most of these instances with `FatalDiagnosticError` class, which provider a better diagnostics error (including location of the problematic code).

PR Close #35244
2020-02-20 11:25:23 -08:00
Pete Bacon Darwin eef07539a6 feat(ngcc): pause async ngcc processing if another process has the lockfile (#35131)
ngcc uses a lockfile to prevent two ngcc instances from executing at the
same time. Previously, if a lockfile was found the current process would
error and exit.

Now, when in async mode, the current process is able to wait for the previous
process to release the lockfile before continuing itself.

PR Close #35131
2020-02-18 17:20:41 -08:00
Pete Bacon Darwin 7e8ce24116 refactor(compiler-cli): add `invalidateCaches` to `CachedFileSystem` (#35131)
This is needed by ngcc when reading volatile files that may
be changed by an external process (e.g. the lockfile).

PR Close #35131
2020-02-18 17:20:41 -08:00
JoostK 5de5b52beb fix(ivy): repeat template guards to narrow types in event handlers (#35193)
In Ivy's template type checker, event bindings are checked in a closure
to allow for accurate type inference of the `$event` parameter. Because
of the closure, any narrowing effects of template guards will no longer
be in effect when checking the event binding, as TypeScript assumes that
the guard outside of the closure may no longer be true once the closure
is invoked. For more information on TypeScript's Control Flow Analysis,
please refer to https://github.com/microsoft/TypeScript/issues/9998.

In Angular templates, it is known that an event binding can only be
executed when the view it occurs in is currently rendered, hence the
corresponding template guard is known to hold during the invocation of
an event handler closure. As such, it is desirable that any narrowing
effects from template guards are still in effect within the event
handler closure.

This commit tweaks the generated Type-Check Block (TCB) to repeat all
template guards within an event handler closure. This achieves the
narrowing effect of the guards even within the closure.

Fixes #35073

PR Close #35193
2020-02-07 13:06:00 -08:00
Alex Rickabaugh 3c69442dbd feat(compiler-cli): implement NgTscPlugin on top of the NgCompiler API (#34792)
This commit implements an experimental integration with tsc_wrapped, where
it can load the Angular compiler as a plugin and perform Angular
transpilation at a user's request.

This is an alternative to the current ngc_wrapped mechanism, which is a fork
of tsc_wrapped from several years ago. tsc_wrapped has improved
significantly since then, and this feature will allow Angular to benefit
from those improvements.

Currently the plugin API between tsc_wrapped and the Angular compiler is a
work in progress, so NgTscPlugin does not yet implement any interfaces from
@bazel/typescript (the home of tsc_wrapped). Instead, an interface is
defined locally to guide this standardization.

PR Close #34792
2020-02-06 15:27:34 -08:00
Alex Rickabaugh 14aa6d090e refactor(ivy): compute ignoreFiles for compilation on initialization (#34792)
This commit moves the calculation of `ignoreFiles` - the set of files to be
ignored by a consumer of the `NgCompiler` API - from its `prepareEmit`
operation to its initialization. It's now available as a field on
`NgCompiler`.

This will allow a consumer to skip gathering diagnostics for `ignoreFiles`
as well as skip emit.

PR Close #34792
2020-02-06 15:27:34 -08:00
Alex Rickabaugh c35671c0a4 fix(ivy): template type-check errors from TS should not use NG error codes (#35146)
A bug previously caused the template type-checking diagnostics produced by
TypeScript for template expressions to use -99-prefixed error codes. These
codes are converted to "NG" errors instead of "TS" errors during diagnostic
printing. This commit fixes the issue.

PR Close #35146
2020-02-04 15:59:01 -08:00
JoostK 6ddf5508db fix(ivy): support emitting a reference to interface declarations (#34849)
In #34021 the ngtsc compiler gained the ability to emit type parameter
constraints, which would generate imports for any type reference that
is used within the constraint. However, the `AbsoluteModuleStrategy`
reference emitter strategy did not consider interface declarations as a
valid declaration it can generate an import for, throwing an error
instead.

This commit fixes the issue by including interface declarations in the
logic that determines whether something is a declaration.

Fixes #34837

PR Close #34849
2020-02-04 10:40:45 -08:00
JoostK 5cada5cce1 fix(ivy): recompile on template change in ngc watch mode on Windows (#34015)
In #33551, a bug in `ngc --watch` mode was fixed so that a component is
recompiled when its template file is changed. Due to insufficient
normalization of files paths, this fix did not have the desired effect
on Windows.

Fixes #32869

PR Close #34015
2020-02-04 10:40:22 -08:00
George Kalpakas 523c785e8f fix(ngcc): correctly invalidate cache when moving/removing files/directories (#35106)
One particular scenario where this was causing problems was when the
[BackupFileCleaner][1] restored a file (such as a `.d.ts` file) by
[moving the backup file][2] to its original location, but the modified
content was kept in the cache.

[1]: https://github.com/angular/angular/blob/4d36b2f6e/packages/compiler-cli/ngcc/src/writing/cleaning/cleaning_strategies.ts#L54
[2]: https://github.com/angular/angular/blob/4d36b2f6e/packages/compiler-cli/ngcc/src/writing/cleaning/cleaning_strategies.ts#L61

Fixes #35095

PR Close #35106
2020-02-03 14:25:47 -08:00
Pete Bacon Darwin 2e52fcf1eb refactor(compiler-cli): add `removeDir()` to `FileSystem` (#35079)
PR Close #35079
2020-01-31 17:02:44 -08:00
Alan Agius 6d11a81994 fix(compiler-cli): add `sass` as a valid css preprocessor extension (#35052)
`.sass` is a valid preprocessor extension which is used for Sass indented syntax

https://sass-lang.com/documentation/syntax

PR Close #35052
2020-01-31 13:28:39 -08:00
Igor Minar c070037357 refactor(compiler): rename diagnostics/src/code.ts to diagnostics/src/error_code.ts (#35067)
the new filename is less ambiguous and better reflects the name of the symbol defined in it.

PR Close #35067
2020-01-31 11:25:27 -08:00
Andrew Kushnir 6e5cfd2cd2 fix(ivy): catch FatalDiagnosticError thrown from preanalysis phase (#34801)
Component's decorator handler exposes `preanalyze` method to preload async resources (templates, stylesheets). The logic in preanalysis phase may throw `FatalDiagnosticError` errors that contain useful information regarding the origin of the problem. However these errors from preanalysis phase were not intercepted in TraitCompiler, resulting in just error message text be displayed. This commit updates the logic to handle FatalDiagnosticError and transform it before throwing, so that the result diagnostic errors contain the necessary info.

PR Close #34801
2020-01-27 10:58:27 -08:00
Alex Rickabaugh 24b2f1da2b refactor(ivy): introduce the 'core' package and split apart NgtscProgram (#34887)
Previously, NgtscProgram lived in the main @angular/compiler-cli package
alongside the legacy View Engine compiler. As a result, the main package
depended on all of the ngtsc internal packages, and a significant portion of
ngtsc logic lived in NgtscProgram.

This commit refactors NgtscProgram and moves the main logic of compilation
into a new 'core' package. The new package defines a new API which enables
implementers of TypeScript compilers (compilers built using the TS API) to
support Angular transpilation as well. It involves a new NgCompiler type
which takes a ts.Program and performs Angular analysis and transformations,
as well as an NgCompilerHost which wraps an input ts.CompilerHost and adds
any extra Angular files.

Together, these two classes are used to implement a new NgtscProgram which
adapts the legacy api.Program interface used by the View Engine compiler
onto operations on the new types. The new NgtscProgram implementation is
significantly smaller and easier to reason about.

The new NgCompilerHost replaces the previous GeneratedShimsHostWrapper which
lived in the 'shims' package.

A new 'resource' package is added to support the HostResourceLoader which
previously lived in the outer compiler package.

As a result of the refactoring, the dependencies of the outer
@angular/compiler-cli package on ngtsc internal packages are significantly
trimmed.

This refactoring was driven by the desire to build a plugin interface to the
compiler so that tsc_wrapped (another consumer of the TS compiler APIs) can
perform Angular transpilation on user request.

PR Close #34887
2020-01-24 08:59:59 -08:00
JoostK 7659f2e24b fix(ngcc): do not attempt compilation when analysis fails (#34889)
In #34288, ngtsc was refactored to separate the result of the analysis
and resolve phase for more granular incremental rebuilds. In this model,
any errors in one phase transition the trait into an error state, which
prevents it from being ran through subsequent phases. The ngcc compiler
on the other hand did not adopt this strict error model, which would
cause incomplete metadata—due to errors in earlier phases—to be offered
for compilation that could result in a hard crash.

This commit updates ngcc to take advantage of ngtsc's `TraitCompiler`,
that internally manages all Ivy classes that are part of the
compilation. This effectively replaces ngcc's own `AnalyzedFile` and
`AnalyzedClass` types, together with all of the logic to drive the
`DecoratorHandler`s. All of this is now handled in the `TraitCompiler`,
benefiting from its explicit state transitions of `Trait`s so that the
ngcc crash is a thing of the past.

Fixes #34500
Resolves FW-1788

PR Close #34889
2020-01-23 14:47:03 -08:00
George Kalpakas ba2bf82540 refactor(compiler-cli): fix typo in `TypeScriptCompilerHost#getExportsOfModule()` error message (#34811)
PR Close #34811
2020-01-23 13:58:37 -08:00
Alex Rickabaugh 5aa0507f6a docs(ivy): move incremental package README file to the correct location (#34912)
It was erroneously committed to src/.

PR Close #34912
2020-01-23 13:30:10 -08:00
Alex Rickabaugh 5b2fa3cfd3 fix(ivy): correctly emit component when it's removed from its module (#34912)
This commit fixes a bug in the incremental rebuild engine of ngtsc, where if
a component was removed from its NgModule, it would not be properly
re-emitted.

The bug stemmed from the fact that whether to emit a file was a decision
based purely on the updated dependency graph, which captures the dependency
structure of the rebuild program. This graph has no edge from the component
to its former module (as it was removed, of course), so the compiler
erroneously decides not to emit the component.

The bug here is that the compiler does know, from the previous dependency
graph, that the component file has logically changed, since its previous
dependency (the module file) has changed. This information was not carried
forward into the set of files which need to be emitted, because it was
assumed that the updated dependency graph was a more accurate source of that
information.

With this commit, the set of files which need emit is pre-populated with the
set of logically changed files, to cover edge cases like this.

Fixes #34813

PR Close #34912
2020-01-23 13:30:10 -08:00
Alex Rickabaugh 0c8d085666 fix(ivy): use any for generic context checks when !strictTemplates (#34649)
Previously, the template type-checker would always construct a generic
template context type with correct bounds, even when strictTemplates was
disabled. This meant that type-checking of expressions involving that type
was stricter than View Engine.

This commit introduces a 'strictContextGenerics' flag which behaves
similarly to other 'strictTemplates' flags, and switches the inference of
generic type parameters on the component context based on the value of this
flag.

PR Close #34649
2020-01-23 10:31:48 -08:00
Alex Rickabaugh cb11380515 fix(ivy): disable use of aliasing in template type-checking (#34649)
FileToModuleHost aliasing supports compilation within environments that have
two properties:

1. A `FileToModuleHost` exists which defines canonical module names for any
   given TS file.
2. Dependency restrictions exist which prevent the import of arbitrary files
   even if such files are within the .d.ts transitive closure of a
   compilation ("strictdeps").

In such an environment, generated imports can only go through import paths
which are already present in the user program. The aliasing system supports
the generation and consumption of such imports at runtime.

`FileToModuleHost` aliasing does not emit re-exports in .d.ts files. This
means that it's safe to rely on alias re-exports in generated .js code (they
are guaranteed to exist at runtime) but not in template type-checking code
(since TS will not be able to follow such imports). Therefore, non-aliased
imports should be used in template type-checking code.

This commit adds a `NoAliasing` flag to `ImportFlags` and sets it when
generating imports in template type-checking code. The testing environment
is also patched to support resolution of FileToModuleHost canonical paths
within the template type-checking program, enabling testing of this change.

PR Close #34649
2020-01-23 10:31:48 -08:00
Alex Rickabaugh 5b9c96b9b8 refactor(ivy): change ImportMode enum to ImportFlags (#34649)
Previously, `ReferenceEmitter.emit()` took an `ImportMode` enum value, where
one value of the enum allowed forcing new imports to be generated when
emitting a reference to some value or type.

This commit refactors `ImportMode` to be an `ImportFlags` value instead.
Using a bit field of flags will allow future customization of reference
emitting.

PR Close #34649
2020-01-23 10:31:47 -08:00
Alex Rickabaugh af015982f5 fix(ivy): wrap 'as any' casts in parentheses when needed (#34649)
Previously, when generating template type-checking code, casts to 'any' were
produced as `expr as any`, regardless of the expression. However, for
certain expression types, this led to precedence issues with the cast. For
example, `a !== b` is a `ts.BinaryExpression`, and wrapping it directly in
the cast yields `a !== b as any`, which is semantically equivalent to
`a !== (b as any)`. This is obviously not what is intended.

Instead, this commit adds a list of expression types for which a "bare"
wrapping is permitted. For other expressions, parentheses are added to
ensure correct precedence: `(a !== b) as any`

PR Close #34649
2020-01-23 10:31:47 -08:00
Alex Rickabaugh cfe5dccdd2 fix(ivy): type-check multiple bindings to the same input (#34649)
Currently, the template type-checker gives an error if there are multiple
bindings to the same input. This commit aligns the behavior of the template
type-checker with the View Engine runtime: only the first binding to a field
has any effect. The rest are ignored.

PR Close #34649
2020-01-23 10:31:47 -08:00
Alex Rickabaugh 22c957a93d fix(ivy): type-checking of properties which map to multiple fields (#34649)
It's possible to declare multiple inputs for a directive/component which all
map to the same property name. This is usually done in error, as only one of
any bindings to the property will "win".

In the template type-checker, an error was previously being raised as a
result of this ambiguity. Specifically, a type constructor was produced
which required a binding for each field, but only one of the fields had
a value via the binding. TypeScript would (rightfully) error on missing
values for the remaining fields. This ultimately was happening when the
code which generated the default values for "unset" inputs belonging to
directives or pipes used the final mapping from properties to fields as
a source for field names.

Instead, this commit uses the original list of fields to generate unset
input values, which correctly provides values for fields which shared a
property name but didn't receive the final binding.

PR Close #34649
2020-01-23 10:31:47 -08:00
Paul Gschwendtner 6b468f9b2e fix(ngcc): libraries using spread in object literals cannot be processed (#34661)
Consider a library that uses a shared constant for host bindings. e.g.

```ts
export const BASE_BINDINGS= {
  '[class.mat-themed]': '_isThemed',
}

----

@Directive({
  host: {...BASE_BINDINGS, '(click)': '...'}
})
export class Dir1 {}

@Directive({
  host: {...BASE_BINDINGS, '(click)': '...'}
})
export class Dir2 {}
```

Previously when these components were shipped as part of the
library to NPM, consumers were able to consume `Dir1` and `Dir2`.
No errors showed up.

Now with Ivy, when ngcc tries to process the library, an error
will be thrown. The error is stating that the host bindings should
be an object (which they obviously are). This happens because
TypeScript transforms the object spread to individual
`Object.assign` calls (for compatibility).

The partial evaluator used by the `@Directive` annotation handler
is unable to process this expression because there is no
integrated support for `Object.assign`. In View Engine, this was
not a problem because the `metadata.json` files from the library
were used to compute the host bindings.

Fixes #34659

PR Close #34661
2020-01-23 10:29:57 -08:00
Pete Bacon Darwin 3a6cb6a5d2 refactor(ivy): add exclusive mode to `writeFile()` (#34722)
This commit adds an `exclusive` parameter to the
`FileSystem.writeFile()` method. When this parameter is
true, the method will fail with an `EEXIST` error if the
file already exists on disk.

PR Close #34722
2020-01-22 15:35:34 -08:00
Pete Bacon Darwin ecbc25044c refactor(ivy): add `removeFile` to ngtsc `FileSystem` (#34722)
PR Close #34722
2020-01-22 15:35:34 -08:00
Greg Magolan aee67f08d9 test: handle bootstrap templated_args in jasmine_node_test defaults.bzl (#34736)
PR Close #34736
2020-01-15 14:58:07 -05:00
Greg Magolan dcff76e8b9 refactor: handle breaking changes in rules_nodejs 1.0.0 (#34736)
The major one that affects the angular repo is the removal of the bootstrap attribute in nodejs_binary, nodejs_test and jasmine_node_test in favor of using templated_args --node_options=--require=/path/to/script. The side-effect of this is that the bootstrap script does not get the require.resolve patches with explicitly loading the targets _loader.js file.

PR Close #34736
2020-01-15 14:58:07 -05:00
Andrius 1f79e624d1 build: typescript 3.7 support (#33717)
This PR updates TypeScript version to 3.7 while retaining compatibility with TS3.6.

PR Close #33717
2020-01-14 16:42:21 -08:00
crisbeto c3c72f689a fix(ivy): handle overloaded constructors in ngtsc (#34590)
Currently ngtsc looks for the first `ConstructorDeclaration` when figuring out what the parameters are so that it can generate the DI instructions. The problem is that if a constructor has overloads, it'll have several `ConstructorDeclaration` members with a different number of parameters. These changes tweak the logic so it looks for the constructor implementation.

PR Close #34590
2020-01-14 15:17:09 -08:00
crisbeto 6d534f10e6 fix(ivy): don't run decorator handlers against declaration files (#34557)
Currently the decorator handlers are run against all `SourceFile`s in the compilation, but we shouldn't be doing it against declaration files. This initially came up as a CI issue in #33264 where it was worked around only for the `DirectiveDecoratorHandler`. These changes move the logic into the `TraitCompiler` and `DecorationAnalyzer` so that it applies to all of the handlers.

PR Close #34557
2020-01-10 15:54:51 -08:00
atscott 538d0446b5 Revert "refactor: handle breaking changes in rules_nodejs 1.0.0 (#34589)" (#34730)
This reverts commit 9bb349e1c8.

PR Close #34730
2020-01-10 14:12:15 -08:00
atscott 5e60215470 Revert "test: handle bootstrap templated_args in jasmine_node_test defaults.bzl (#34589)" (#34730)
This reverts commit da4782e67f.

PR Close #34730
2020-01-10 14:12:15 -08:00
Greg Magolan da4782e67f test: handle bootstrap templated_args in jasmine_node_test defaults.bzl (#34589)
PR Close #34589
2020-01-10 08:31:59 -08:00
Greg Magolan 9bb349e1c8 refactor: handle breaking changes in rules_nodejs 1.0.0 (#34589)
The major one that affects the angular repo is the removal of the bootstrap attribute in nodejs_binary, nodejs_test and jasmine_node_test in favor of using templated_args --node_options=--require=/path/to/script. The side-effect of this is that the bootstrap script does not get the require.resolve patches with explicitly loading the targets _loader.js file.

PR Close #34589
2020-01-10 08:31:59 -08:00
Pete Bacon Darwin 570574df5b fix(ngcc): don't crash if symbol has no declarations (#34658)
In some cases TypeScript is unable to identify a valid
symbol for an export. In this case it returns an "unknown"
symbol, which does not reference any declarations.

This fix ensures that ngcc does not crash if such a symbol
is encountered by checking whether `symbol.declarations`
exists before accessing it.

The commit does not contain a unit test as it was not possible
to recreate a scenario that had such an "unknown" symbol in
the unit test environment. The fix has been manually checked
against that original issue; and also this check is equivalent to
similar checks elsewhere in the code, e.g.

https://github.com/angular/angular/blob/8d0de89e/packages/compiler-cli/src/ngtsc/reflection/src/typescript.ts#L309

Fixes #34560

PR Close #34658
2020-01-08 15:07:10 -08:00
JoostK e116816131 refactor(ivy): let `strictTemplates` imply `fullTemplateTypeCheck` (#34195)
Previously, it was required that both `fullTemplateTypeCheck` and
`strictTemplates` had to be enabled for strict mode to be enabled. This
is strange, as `strictTemplates` implies `fullTemplateTypeCheck`. This
commit makes setting the `fullTemplateTypeCheck` flag optional so that
strict mode can be enabled by just setting `strictTemplates`.

PR Close #34195
2020-01-06 11:07:54 -08:00
JoostK 2e82357611 refactor(ivy): verify template type check options are compatible (#34195)
It is now an error if '"fullTemplateTypeCheck"' is disabled while
`"strictTemplates"` is enabled, as enabling the latter implies that the
former is also enabled.

PR Close #34195
2020-01-06 11:07:54 -08:00
JoostK 1de49ba369 refactor(ivy): consistently translate types to `ts.TypeNode` (#34021)
The compiler has a translation mechanism to convert from an Angular
`Type` to a `ts.TypeNode`, as appropriate. Prior to this change, it
would translate certain Angular expressions into their value equivalent
in TypeScript, instead of the correct type equivalent. This was possible
as the `ExpressionVisitor` interface is not strictly typed, with `any`s
being used for return values.

For example, a literal object was translated into a
`ts.ObjectLiteralExpression`, containing `ts.PropertyAssignment` nodes
as its entries. This has worked without issues as their printed
representation is identical, however it was incorrect from a semantic
point of view. Instead, a `ts.TypeLiteralNode` is created with
`ts.PropertySignature` as its members, which corresponds with the type
declaration of an object literal.

PR Close #34021
2020-01-06 11:06:07 -08:00
JoostK f27187c063 perf(ivy): support simple generic type constraints in local type ctors (#34021)
In Ivy's template type checker, type constructors are created for all
directive types to allow for accurate type inference to work. The type
checker has two strategies for dealing with such type constructors:

1. They can be emitted local to the type check block/type check file.
2. They can be emitted as static `ngTypeCtor` field into the directive
itself.

The first strategy is preferred, as it avoids having to update the
directive type which would cause a more expensive rebuild. However, this
strategy is not suitable for directives that have constrained generic
types, as those constraints would need to be present on the local type
constructor declaration. This is not trivial, as it requires that any
type references within a type parameter's constraint are imported into
the local context of the type check block.

For example, lets consider the `NgForOf` directive from '@angular/core'
looks as follows:

```typescript
import {NgIterable} from '@angular/core';

export class NgForOf<T, U extends NgIterable<T>> {}
```

The type constructor will then have the signature:
`(o: Pick<i1.NgForOf<T, U>, 'ngForOf'>) => i1.NgForOf<T, U>`

Notice how this refers to the type parameters `T` and `U`, so the type
constructor needs to be emitted into a scope where those types are
available, _and_ have the correct constraints.

Previously, the template type checker would detect the situation where a
type parameter is constrained, and would emit the type constructor
using strategy 2; within the directive type itself. This approach makes
any type references within the generic type constraints lexically
available:

```typescript
export class NgForOf<T, U extends NgIterable<T>> {
  static ngTypeCtor<T = any, U extends NgIterable<T> = any>
    (o: Pick<NgForOf<T, U>, 'ngForOf'>): NgForOf<T, U> { return null!; }
}
```

This commit introduces the ability to emit a type parameter with
constraints into a different context, under the condition that it can
be imported from an absolute module. This allows a generic type
constructor to be emitted into a type check block or type check file
according to strategy 1, as imports have been generated for all type
references within generic type constraints. For example:

```typescript
import * as i0 from '@angular/core';
import * as i1 from '@angular/common';

const _ctor1: <T = any, U extends i0.NgIterable<T> = any>
  (o: Pick<i1.NgForOf<T, U>, 'ngForOf'>) => i1.NgForOf<T, U> = null!;
```

Notice how the generic type constraint of `U` has resulted in an import
of `@angular/core`, and the `NgIterable` is transformed into a qualified
name during the emitting process.

Resolves FW-1739

PR Close #34021
2020-01-06 11:06:07 -08:00
crisbeto cf37c003ff feat(ivy): error in ivy when inheriting a ctor from an undecorated base (#34460)
Angular View Engine uses global knowledge to compile the following code:

```typescript
export class Base {
  constructor(private vcr: ViewContainerRef) {}
}

@Directive({...})
export class Dir extends Base {
  // constructor inherited from base
}
```

Here, `Dir` extends `Base` and inherits its constructor. To create a `Dir`
the arguments to this inherited constructor must be obtained via dependency
injection. View Engine is able to generate a correct factory for `Dir` to do
this because via metadata it knows the arguments of `Base`'s constructor,
even if `Base` is declared in a different library.

In Ivy, DI is entirely a runtime concept. Currently `Dir` is compiled with
an ngDirectiveDef field that delegates its factory to `getInheritedFactory`.
This looks for some kind of factory function on `Base`, which comes up
empty. This case looks identical to an inheritance chain with no
constructors, which works today in Ivy.

Both of these cases will now become an error in this commit. If a decorated
class inherits from an undecorated base class, a diagnostic is produced
informing the user of the need to either explicitly declare a constructor or
to decorate the base class.

PR Close #34460
2019-12-18 15:04:49 -08:00
crisbeto dcc8ff4ce7 feat(ivy): throw compilation error when providing undecorated classes (#34460)
Adds a compilation error if the consumer tries to pass in an undecorated class into the `providers` of an `NgModule`, or the `providers`/`viewProviders` arrays of a `Directive`/`Component`.

PR Close #34460
2019-12-18 15:04:49 -08:00
Alex Rickabaugh 6057c7a373 refactor(ivy): force NG-space error codes for template errors (#34460)
The function `makeTemplateDiagnostic` was accepting an error code of type
`number`, making it easy to accidentally pass an `ErrorCode` directly and
not convert it to an Angular diagnostic code first.

This commit refactors `makeTemplateDiagnostic` to accept `ErrorCode` up
front, and convert it internally. This is less error-prone.

PR Close #34460
2019-12-18 15:04:49 -08:00
Alex Rickabaugh 498a2ffba3 fix(ivy): don't produce template diagnostics when scope is invalid (#34460)
Previously, ngtsc would perform scope analysis (which directives/pipes are
available inside a component's template) and template type-checking of that
template as separate steps. If a component's scope was somehow invalid (e.g.
its NgModule imported something which wasn't another NgModule), the
component was treated as not having a scope. This meant that during template
type-checking, errors would be produced for any invalid expressions/usage of
other components that should have been in the scope.

This commit changes ngtsc to skip template type-checking of a component if
its scope is erroneous (as opposed to not present in the first place). Thus,
users aren't overwhelmed with diagnostic errors for the template and are
only informed of the root cause of the problem: an invalid NgModule scope.

Fixes #33849

PR Close #34460
2019-12-18 15:04:49 -08:00
Alex Rickabaugh 047488c5d8 refactor(ivy): move NgModule declaration checks to the 'scope' package (#34460)
Previously each NgModule trait checked its own scope for valid declarations
during 'resolve'. This worked, but caused the LocalModuleScopeRegistry to
declare that NgModule scopes were valid even if they contained invalid
declarations.

This commit moves the generation of diagnostic errors to the
LocalModuleScopeRegistry where it belongs. Now the registry can consider an
NgModule's scope to be invalid if it contains invalid declarations.

PR Close #34460
2019-12-18 15:04:49 -08:00
JoostK 3959511b80 fix(ivy): avoid duplicate errors in safe navigations and template guards (#34417)
The template type checker generates TypeScript expressions for any
expression that occurs in a template, so that TypeScript can check it
and produce errors. Some expressions as they occur in a template may be
translated into TypeScript code multiple times, for instance a binding
to a directive input that has a template guard.

One example would be the `NgIf` directive, which has a template guard to
narrow the type in the template as appropriate. Given the following
template:

```typescript
@Component({
  template: '<div *ngIf="person">{{ person.name }}</div>'
})
class AppComponent {
  person?: { name: string };
}
```

A type check block (TCB) with roughly the following structure is
created:

```typescript
function tcb(ctx: AppComponent) {
  const t1 = NgIf.ngTypeCtor({ ngIf: ctx.person });
  if (ctx.person) {
    "" + ctx.person.name;
  }
}
```

Notice how the `*ngIf="person"` binding is present twice: once in the
type constructor call and once in the `if` guard. As such, TypeScript
will check both instances and would produce duplicate errors, if any
were found.

Another instance is when the safe navigation operator is used, where an
expression such as `person?.name` is emitted into the TCB as
`person != null ? person!.name : undefined`. As can be seen, the
left-hand side expression `person` occurs twice in the TCB.

This commit adds the ability to insert markers into the TCB that
indicate that any errors within the expression should be ignored. This
is similar to `@ts-ignore`, however it can be applied more granularly.

PR Close #34417
2019-12-18 14:44:42 -08:00
JoostK 024e3b30ac refactor(ivy): cleanup translation of source spans in type checker (#34417)
This commit cleans up the template type checker regarding how
diagnostics are produced.

PR Close #34417
2019-12-18 14:44:42 -08:00
JoostK 8c6468a025 refactor(ivy): use absolute source spans in type checker (#34417)
Previously, the type checker would compute an absolute source span by
combining an expression AST node's `ParseSpan` (relative to the start of
the expression) together with the absolute offset of the expression as
represented in a `ParseSourceSpan`, to arrive at a span relative to the
start of the file. This information is now directly available on an
expression AST node in the `AST.sourceSpan` property, which can be used
instead.

PR Close #34417
2019-12-18 14:44:42 -08:00
Pete Bacon Darwin 31be29a9f3 fix(ngcc): use the correct identifiers when updating typings files (#34254)
Previously the identifiers used in the typings files were the same as
those used in the source files.

When the typings files and the source files do not match exactly, e.g.
when one of them is flattened, while the other is a deep tree, it is
possible for identifiers to be renamed.

This commit ensures that the correct identifier is used in typings files
when the typings file does not export the same name as the source file.

Fixes https://github.com/angular/ngcc-validation/pull/608

PR Close #34254
2019-12-18 11:25:01 -08:00
George Kalpakas 7938ff34b1 refactor(compiler-cli): avoid unnecessarily calling `getSourceFile()` twice in `PartialEvaluator` (#34441)
This is not expected to have any noticeable perf impact, but it wasteful
nonetheless (and annoying when stepping through the code while debugging
`ngtsc`/`ngcc`).

PR Close #34441
2019-12-17 14:38:16 -08:00
Alex Rickabaugh 763f8d470a fix(ivy): validate the NgModule declarations field (#34404)
This commit adds three previously missing validations to
NgModule.declarations:

1. It checks that declared classes are actually within the current
   compilation.

2. It checks that declared classes are directives, components, or pipes.

3. It checks that classes are declared in at most one NgModule.

PR Close #34404
2019-12-17 11:39:48 -08:00
Alex Rickabaugh af95dddd7e perf(ivy): eagerly parse the template twice during analysis (#34334)
A quirk of the Angular template parser is that when parsing templates in the
"default" mode, with options specified by the user, the source mapping
information in the template AST may be inaccurate. As a result, the compiler
parses the template twice: once for "emit" and once to produce an AST with
accurate sourcemaps for diagnostic production.

Previously, only the first parse was performed during analysis. The second
parse occurred during the template type-checking phase, just in time to
produce the template type-checking file.

However, with the reuse of analysis results during incremental builds, it
makes more sense to do the diagnostic parse eagerly during analysis so that
the work isn't unnecessarily repeated in subsequent builds. This commit
refactors the `ComponentDecoratorHandler` to do both parses eagerly, which
actually cleans up some complexity around template parsing as well.

PR Close #34334
2019-12-12 14:13:16 -08:00
JoostK 8c2cbdd385 perf(ivy): use module resolution cache (#34332)
During TypeScript module resolution, a lot of filesystem requests are
done. This is quite an expensive operation, so a module resolution cache
can be used to speed up the process significantly.

This commit lets the Ivy compiler perform all module resolution with a
module resolution cache. Note that the module resolution behavior can be
changed with a custom compiler host, in which case that custom host
implementation is responsible for caching. In the case of the Angular
CLI a custom compiler host with proper module resolution caching is
already in place, so the CLI already has this optimization.

PR Close #34332
2019-12-12 14:06:37 -08:00
JoostK 2f5ddd9c96 perf(ivy): cache export scopes extracted from declaration files (#34332)
The export scope of NgModules from external compilations units, as
present in .d.ts declarations, does not change during a compilation so
can be easily shared. There was already a cache but the computed export
scope was not actually stored there. This commit fixes that.

PR Close #34332
2019-12-12 14:06:36 -08:00
Alex Rickabaugh 6ba5fdc208 fix(ivy): generate a better error for template var writes (#34339)
In Ivy it's illegal for a template to write to a template variable. So the
template:

```html
<ng-template let-somevar>
  <button (click)="somevar = 3">Set var to 3</button>
</ng-template>
```

is erroneous and previously would fail to compile with an assertion error
from the `TemplateDefinitionBuilder`. This error wasn't particularly user-
friendly, though, as it lacked the context of which template or where the
error occurred.

In this commit, a new check in template type-checking is added which detects
such erroneous writes and produces a true diagnostic with the appropriate
context information.

Closes #33674

PR Close #34339
2019-12-12 13:13:32 -08:00
Alex Rickabaugh 74edde0a94 perf(ivy): reuse prior analysis work during incremental builds (#34288)
Previously, the compiler performed an incremental build by analyzing and
resolving all classes in the program (even unchanged ones) and then using
the dependency graph information to determine which .js files were stale and
needed to be re-emitted. This algorithm produced "correct" rebuilds, but the
cost of re-analyzing the entire program turned out to be higher than
anticipated, especially for component-heavy compilations.

To achieve performant rebuilds, it is necessary to reuse previous analysis
results if possible. Doing this safely requires knowing when prior work is
viable and when it is stale and needs to be re-done.

The new algorithm implemented by this commit is such:

1) Each incremental build starts with knowledge of the last known good
   dependency graph and analysis results from the last successful build,
   plus of course information about the set of files changed.

2) The previous dependency graph's information is used to determine the
   set of source files which have "logically" changed. A source file is
   considered logically changed if it or any of its dependencies have
   physically changed (on disk) since the last successful compilation. Any
   logically unchanged dependencies have their dependency information copied
   over to the new dependency graph.

3) During the `TraitCompiler`'s loop to consider all source files in the
   program, if a source file is logically unchanged then its previous
   analyses are "adopted" (and their 'register' steps are run). If the file
   is logically changed, then it is re-analyzed as usual.

4) Then, incremental build proceeds as before, with the new dependency graph
   being used to determine the set of files which require re-emitting.

This analysis reuse avoids template parsing operations in many circumstances
and significantly reduces the time it takes ngtsc to rebuild a large
application.

Future work will increase performance even more, by tackling a variety of
other opportunities to reuse or avoid work.

PR Close #34288
2019-12-12 13:11:45 -08:00
Alex Rickabaugh 50cdc0ac1b refactor(ivy): move analysis side effects into a register phase (#34288)
Previously 'analyze' in the various `DecoratorHandler`s not only extracts
information from the decorators on the classes being analyzed, but also has
several side effects within the compiler:

* it can register metadata about the types involved in global metadata
  trackers.
* it can register information about which .ngfactory symbols are actually
  needed.

In this commit, these side-effects are moved into a new 'register' phase,
which runs after the 'analyze' step. Currently this is a no-op refactoring
as 'register' is always called directly after 'analyze'. In the future this
opens the door for re-use of prior analysis work (with only 'register' being
called, to apply the above side effects).

Also as part of this refactoring, the reification of NgModule scope
information into the incremental dependency graph is moved to the
`NgtscProgram` instead of the `TraitCompiler` (which now only manages trait
compilation and does not have other side effects).

PR Close #34288
2019-12-12 13:11:45 -08:00
Alex Rickabaugh 252e3e9487 refactor(ivy): formalize the compilation process for matched handlers (#34288)
Prior to this commit, the `IvyCompilation` tracked the state of each matched
`DecoratorHandler` on each class in the `ts.Program`, and how they
progressed through the compilation process. This tracking was originally
simple, but had grown more complicated as the compiler evolved. The state of
each specific "target" of compilation was determined by the nullability of
a number of fields on the object which tracked it.

This commit formalizes the process of compilation of each matched handler
into a new "trait" concept. A trait is some aspect of a class which gets
created when a `DecoratorHandler` matches the class. It represents an Ivy
aspect that needs to go through the compilation process.

Traits begin in a "pending" state and undergo transitions as various steps
of compilation take place. The `IvyCompilation` class is renamed to the
`TraitCompiler`, which manages the state of all of the traits in the active
program.

Making the trait concept explicit will support future work to incrementalize
the expensive analysis process of compilation.

PR Close #34288
2019-12-12 13:11:45 -08:00
JoostK b72c7a89a9 refactor(ivy): include generic type for `ModuleWithProviders` in .d.ts files (#34235)
The `ModuleWithProviders` type has an optional type parameter that
should be specified to indicate what NgModule class will be provided.
This enables the Ivy compiler to statically determine the NgModule type
from the declaration files. This type parameter will become required in
the future, however to aid in the migration the compiler will detect
code patterns where using `ModuleWithProviders` as return type is
appropriate, in which case it transforms the emitted .d.ts files to
include the generic type argument.

This should reduce the number of occurrences where `ModuleWithProviders`
is referenced without its generic type argument.

Resolves FW-389

PR Close #34235
2019-12-10 16:34:47 -08:00
Alex Rickabaugh a8fced8846 refactor(ivy): abstract .d.ts file transformations (#34235)
This commit refactors the way the compiler transforms .d.ts files during
ngtsc builds. Previously the `IvyCompilation` kept track of a
`DtsFileTransformer` for each input file. Now, any number of
`DtsTransform` operations that need to be applied to a .d.ts file are
collected in the `DtsTransformRegistry`. These are then ran using a
single `DtsTransformer` so that multiple transforms can be applied
efficiently.

PR Close #34235
2019-12-10 16:34:46 -08:00
JoostK 0984fbc748 fix(compiler-cli): allow declaration-only template type check members (#34296)
The metadata collector for View Engine compilations emits error symbols
for static class members that have not been initialized, which prevents
a library from building successfully when `strictMetadataEmit` is
enabled, which is recommended for libraries to avoid issues in library
consumers. This is troublesome for libraries that are adopting static
members for the Ivy template type checker: these members don't need a
value assignment as only their type is of importance, however this
causes metadata errors. As such, a library used to be required to
initialize the special static members to workaround this error,
undesirably introducing a code-size overhead in terms of emitted
JavaScript code.

This commit modifies the collector logic to specifically ignore
the special static members for Ivy's template type checker, preventing
any errors from being recorded during the metadata collection.

PR Close #34296
2019-12-10 16:31:23 -08:00
JoostK 22ad701134 fix(ivy): inherit static coercion members from base classes (#34296)
For Ivy's template type checker it is possible to let a directive
specify static members to allow a wider type for some input:

```typescript
export class MatSelect {
  @Input() disabled: boolean;

  static ngAcceptInputType_disabled: boolean | string;
}
```

This allows a binding to the `MatSelect.disabled` input to be of type
boolean or string, whereas the `disabled` property itself is only of
type boolean.

Up until now, any static `ngAcceptInputType_*` property was not
inherited for subclasses of a directive class. This is cumbersome, as
the directive's inputs are inherited, so any acceptance member should as
well. To resolve this limitation, this commit extends the flattening of
directive metadata to include the acceptance members.

Fixes #33830
Resolves FW-1759

PR Close #34296
2019-12-10 16:31:23 -08:00
JoostK 95429d55ff fix(ngcc): log Angular error codes correctly (#34014)
Replaces the "TS-99" sequence with just "NG", so that error codes are
logged correctly.

PR Close #34014
2019-12-09 16:13:08 -08:00
Alex Rickabaugh 9fa2c398e7 fix(compiler): switch to modern diagnostic formatting (#34234)
The compiler exports a `formatDiagnostics` function which consumers can use
to print both ts and ng diagnostics. However, this function was previously
using the "old" style TypeScript diagnostics, as opposed to the modern
diagnostic printer which uses terminal colors and prints additional context
information.

This commit updates `formatDiagnostics` to use the modern formatter, plus to
update Ivy's negative error codes to Angular 'NG' errors.

The Angular CLI needs a little more work to use this function for printing
TS diagnostics, but this commit alone should fix Bazel builds as ngc-wrapped
goes through `formatDiagnostics`.

PR Close #34234
2019-12-09 11:37:49 -08:00
Alex Rickabaugh 718d7fe5fe fix(ivy): properly parenthesize ternary expressions when emitted (#34221)
Previously, ternary expressions were emitted as:

condExpr ? trueCase : falseCase

However, this causes problems when ternary operations are nested. In
particular, a template expression of the form:

a?.b ? c : d

would have compiled to:

a == null ? null : a.b ? c : d

The ternary operator is right-associative, so that expression is interpreted
as:

a == null ? null : (a.b ? c : d)

when in reality left-associativity is desired in this particular instance:

(a == null ? null : a.b) ? c : d

This commit adds a check in the expression translator to detect such
left-associative usages of ternaries and to enforce such associativity with
parentheses when necessary.

A test is also added for the template type-checking expression translator,
to ensure it correctly produces right-associative expressions for ternaries
in the user's template.

Fixes #34087

PR Close #34221
2019-12-06 13:01:48 -08:00
crisbeto e6909bda89 fix(ivy): incorrectly validating html foreign objects inside svg (#34178)
Fixes ngtsc incorrectly logging an unknown element diagnostic for HTML elements that are inside an SVG `foreignObject` with the `xhtml` namespace.

Fixes #34171.

PR Close #34178
2019-12-03 10:29:45 -08:00
Pete Bacon Darwin e524322c43 refactor(compiler): i18n - render legacy i18n message ids (#34135)
Now that `@angular/localize` can interpret multiple legacy message ids in the
metablock of a `$localize` tagged template string, this commit adds those
ids to each i18n message extracted from component templates, but only if
the `enableI18nLegacyMessageIdFormat` is not `false`.

PR Close #34135
2019-12-03 10:15:53 -08:00
Kara Erickson 755d2d572f refactor(ivy): remove unnecessary fac wrapper (#34076)
For injectables, we currently generate a factory function in the
injectable def (prov) that delegates to the factory function in
the factory def (fac). It looks something like this:

```
factory: function(t) { return Svc.fac(t); }
```

The extra wrapper function is unnecessary since the args for
the factory functions are the same. This commit changes the
compiler to generate this instead:

```
factory: Svc.fac
```

Because we are generating less code for each injectable, we
should see some modest code size savings. AIO's main bundle
is about 1 KB smaller.

PR Close #34076
2019-12-02 11:35:24 -08:00
Pete Bacon Darwin 2fb9b7ff1b fix(ngcc): do not output duplicate ɵprov properties (#34085)
Previously, the Angular AOT compiler would always add a
`ɵprov` to injectables. But in ngcc this resulted in duplicate `ɵprov`
properties since published libraries already have this property.

Now in ngtsc, trying to add a duplicate `ɵprov` property is an error,
while in ngcc the additional property is silently not added.

// FW-1750

PR Close #34085
2019-11-27 12:46:37 -08:00
Pete Bacon Darwin ee7857300b fix(ivy): i18n - ensure that escaped chars are handled in localized strings (#34065)
When creating synthesized tagged template literals, one must provide both
the "cooked" text and the "raw" (unparsed) text. Previously there were no
good APIs for creating the AST nodes with raw text for such literals.
Recently the APIs were improved to support this, and they do an extra
check to ensure that the raw text parses to be equal to the cooked text.

It turns out there is a bug in this check -
see https://github.com/microsoft/TypeScript/issues/35374.

This commit works around the bug by synthesizing a "head" node and morphing
it by changing its `kind` into the required node type.

// FW-1747

PR Close #34065
2019-11-27 10:36:36 -08:00
crisbeto 25dcc7631f fix(ivy): add flag to skip non-exported classes (#33921)
In ViewEngine we were only generating code for exported classes, however with Ivy we do it no matter whether the class has been exported or not. These changes add an extra flag that allows consumers to opt into the ViewEngine behavior. The flag works by treating non-exported classes as if they're set to `jit: true`.

Fixes #33724.

PR Close #33921
2019-11-25 16:36:44 -05:00
Alex Rickabaugh 4cf197998a fix(ivy): track changes across failed builds (#33971)
Previously, our incremental build system kept track of the changes between
the current compilation and the previous one, and used its knowledge of
inter-file dependencies to evaluate the impact of each change and emit the
right set of output files.

However, a problem arose if the compiler was not able to extract a
dependency graph successfully. This typically happens if the input program
contains errors. In this case the Angular analysis part of compilation is
never executed.

If a file changed in one of these failed builds, in the next build it
appears unchanged. This means that the compiler "forgets" to emit it!

To fix this problem, the compiler needs to know the set of changes made
_since the last successful build_, not simply since the last invocation.

This commit changes the incremental state system to much more explicitly
pass information from the previous to the next compilation, and in the
process to keep track of changes across multiple failed builds, until the
program can be analyzed successfully and the results of those changes
incorporated into the emit plan.

Fixes #32214

PR Close #33971
2019-11-22 17:39:35 -05:00
Pete Bacon Darwin bf1bcd1e08 fix(ngcc): render localized strings when in ES5 format (#33857)
Recently the ngtsc translator was modified to be more `ScriptTarget`
aware, which basically means that it will not generate non-ES5 code
when the output format is ES5 or similar.

This commit enhances that change by also "downleveling" localized
messages. In ES2015 the messages use tagged template literals, which
are not available in ES5.

PR Close #33857
2019-11-21 10:54:59 -08:00
Andrew Kushnir fc2f6b8456 fix(ivy): wrap functions from "providers" in parentheses in Closure mode (#33609)
Due to the fact that Tsickle runs between analyze and transform phases in Angular, Tsickle may transform nodes (add comments with type annotations for Closure) that we captured during the analyze phase. As a result, some patterns where a function is returned from another function may trigger automatic semicolon insertion, which breaks the code (makes functions return `undefined` instead of a function). In order to avoid the problem, this commit updates the code to wrap all functions in some expression ("privders" and "viewProviders") in parentheses. More info can be found in Tsickle source code here: d797426257/src/jsdoc_transformer.ts (L1021)

PR Close #33609
2019-11-20 14:58:35 -08:00
JoostK b07b6f1d40 fix(ivy): avoid infinite recursion when evaluation source files (#33772)
When ngtsc comes across a source file during partial evaluation, it
would determine all exported symbols from that module and evaluate their
values greedily. This greedy evaluation strategy introduces unnecessary
work and can fall into infinite recursion when the evaluation result of
an exported expression would circularly depend on the source file. This
would primarily occur in CommonJS code, where the `exports` variable can
be used to refer to an exported variable. This variable would be
resolved to the source file itself, thereby greedily evaluating all
exported symbols and thus ending up evaluating the `exports` variable
again. This variable would be resolved to the source file itself,
thereby greedily evaluating all exported symbols and thus ending u
evaluating the `exports` variable again. This variable would be
resolved to the source file itself, thereby greedily evaluating all
exported symbols and thus ending up evaluating the `exports` variable
again. This variable would be resolved to the source file itself,
thereby greedily evaluating all exported symbols and thus ending up
evaluating the `exports` variable again. This went on for some time
until all stack frames were exhausted.

This commit introduces a `ResolvedModule` that delays the evaluation of
its exports until they are actually requested. This avoids the circular
dependency when evaluating `exports`, thereby fixing the issue.

Fix #33734

PR Close #33772
2019-11-20 14:51:37 -08:00
JoostK 70311ebca1 fix(ivy): handle non-standard input/output names in template type checking (#33741)
The template type checker generates code to check directive inputs and
outputs, whose name may contain characters that can not be used as
identifier in TypeScript. Prior to this change, such names would be
emitted into the generated code as is, resulting in invalid code and
unexpected template type check errors.

This commit fixes the bug by representing the potentially invalid names
as string literal instead of raw identifier.

Fixes #33590

PR Close #33741
2019-11-20 14:51:12 -08:00
Alex Rickabaugh 08a4f10ee7 fix(ivy): move setClassMetadata calls into a pure iife (#33337)
This commit transforms the setClassMetadata calls generated by ngtsc from:

```typescript
/*@__PURE__*/ setClassMetadata(...);
```

to:

```typescript
/*@__PURE__*/ (function() {
  setClassMetadata(...);
})();
```

Without the IIFE, terser won't remove these function calls because the
function calls have arguments that themselves are function calls or other
impure expressions. In order to make the whole block be DCE-ed by terser,
we wrap it into IIFE and mark the IIFE as pure.

It should be noted that this change doesn't have any impact on CLI* with
build-optimizer, which removes the whole setClassMetadata block within
the webpack loader, so terser or webpack itself don't get to see it at
all. This is done to prevent cross-chunk retention issues caused by
webpack's internal module registry.

* actually we do expect a short-term size regression while
https://github.com/angular/angular-cli/pull/16228
is merged and released in the next rc of the CLI. But long term this
change does nothing to CLI + build-optimizer configuration and is done
primarly to correct the seemingly correct but non-function PURE annotation
that builds not using build-optimizer could rely on.

PR Close #33337
2019-11-20 12:55:58 -08:00
Alex Rickabaugh b54ed980ed fix(ivy): retain JIT metadata unless JIT mode is explicitly disabled (#33671)
NgModules in Ivy have a definition which contains various different bits
of metadata about the module. In particular, this metadata falls into two
categories:

* metadata required to use the module at runtime (for bootstrapping, etc)
in AOT-only applications.
* metadata required to depend on the module from a JIT-compiled app.

The latter metadata consists of the module's declarations, imports, and
exports. To support JIT usage, this metadata must be included in the
generated code, especially if that code is shipped to NPM. However, because
this metadata preserves the entire NgModule graph (references to all
directives and components in the app), it needs to be removed during
optimization for AOT-only builds.

Previously, this was done with a clever design:

1. The extra metadata was added by a function called `setNgModuleScope`.
A call to this function was generated after each NgModule.
2. This function call was marked as "pure" with a comment and used
`noSideEffects` internally, which causes optimizers to remove it.

The effect was that in dev mode or test mode (which use JIT), no optimizer
runs and the full NgModule metadata was available at runtime. But in
production (presumably AOT) builds, the optimizer runs and removes the JIT-
specific metadata.

However, there are cases where apps that want to use JIT in production, and
still make an optimized build. In this case, the JIT-specific metadata would
be erroneously removed. This commit solves that problem by adding an
`ngJitMode` global variable which guards all `setNgModuleScope` calls. An
optimizer can be configured to statically define this global to be `false`
for AOT-only builds, causing the extra metadata to be stripped.

A configuration for Terser used by the CLI is provided in `tooling.ts` which
sets `ngJitMode` to `false` when building AOT apps.

PR Close #33671
2019-11-20 12:55:43 -08:00
Alex Rickabaugh eb6975acaf fix(ivy): don't infer template context types when in full mode (#33537)
The Ivy template type-checker is capable of inferring the type of a
structural directive (such as NgForOf<T>). Previously, this was done with
fullTemplateTypeCheck: true, even if strictTemplates was false. View Engine
previously did not do this inference, and so this causes breakages if the
type of the template context is not what the user expected.

In particular, consider the template:

```html
<div *ngFor="let user of users as all">
  {{user.index}} out of {{all.length}}
</div>
```

As long as `users` is an array, this seems reasonable, because it appears
that `all` is an alias for the `users` array. However, this is misleading.

In reality, `NgForOf` is rendered with a template context that contains
both a `$implicit` value (for the loop variable `user`) as well as a
`ngForOf` value, which is the actual value assigned to `all`. The type of
`NgForOf`'s template context is `NgForContext<T>`, which declares `ngForOf`'s
type to be `NgIterable<T>`, which does not have a `length` property (due to
its incorporation of the `Iterable` type).

This commit stops the template type-checker from inferring template context
types unless strictTemplates is set (and strictInputTypes is not disabled).

Fixes #33527.

PR Close #33537
2019-11-20 11:47:42 -08:00
Alex Rickabaugh 97fbdab3b8 fix(ivy): report watch mode diagnostics correctly (#33862)
This commit changes the reporting of watch mode diagnostics for ngtsc to use
the same formatting as non-watch mode diagnostics. This prints rich and
contextual errors even in watch mode, which previously was not the case.

Fixes #32213

PR Close #33862
2019-11-20 11:46:02 -08:00
Alex Rickabaugh 4be8929844 fix(ivy): always re-analyze the program during incremental rebuilds (#33862)
Previously, the ngtsc compiler attempted to reuse analysis work from the
previous program during an incremental build. To do this, it had to prove
that the work was safe to reuse - that no changes made to the new program
would invalidate the previous analysis.

The implementation of this had a significant design flaw: if the previous
program had errors, the previous analysis would be missing significant
information, and the dependency graph extracted from it would not be
sufficient to determine which files should be re-analyzed to fill in the
gaps. This often meant that the build output after an error was resolved
would be wholly incorrect.

This commit switches ngtsc to take a simpler approach to incremental
rebuilds. Instead of attempting to reuse prior analysis work, the entire
program is re-analyzed with each compilation. This is actually not as
expensive as one might imagine - analysis is a fairly small part of overall
compilation time.

Based on the dependency graph extracted during this analysis, the compiler
then can make accurate decisions on whether to emit specific files. A new
suite of tests is added to validate behavior in the presence of source code
level errors.

This new approach is dramatically simpler than the previous algorithm, and
should always produce correct results for a semantically correct program.s

Fixes #32388
Fixes #32214

PR Close #33862
2019-11-20 11:46:02 -08:00
Alex Rickabaugh cf9aa4fd14 test(ivy): driveDiagnostics() works incrementally (#33862)
PR Close #33862
2019-11-20 11:46:02 -08:00
Alex Rickabaugh 850aee2448 fix(ivy): emit fs-relative paths when rootDir(s) aren't in effect (#33828)
Previously, the compiler assumed that all TS files logically within a
project existed under one or more "root directories". If the TS compiler
option `rootDir` or `rootDirs` was set, they would dictate the root
directories in use, otherwise the current directory was used.

Unfortunately this assumption was unfounded - it's common for projects
without explicit `rootDirs` to import from files outside the current
working directory. In such cases the `LogicalProjectStrategy` would attempt
to generate imports into those files, and fail. This would lead to no
`ReferenceEmitStrategy` being able to generate an import, and end in a
compiler assertion failure.

This commit introduces a new strategy to use when there are no `rootDirs`
explicitly present, the `RelativePathStrategy`. It uses simpler, filesystem-
relative paths to generate imports, even to files above the current working
directory.

Fixes #33659
Fixes #33562

PR Close #33828
2019-11-19 12:41:24 -08:00
Alex Rickabaugh 51720745dd test(ivy): support chdir() on the compiler's filesystem abstraction (#33828)
This commit adds the ability to change directories using the compiler's
internal filesystem abstraction. This is a prerequisite for writing tests
which are sensitive to the current working directory.

In addition to supporting the `chdir()` operation, this commit also fixes
`getDefaultLibLocation()` for mock filesystems to not assume `node_modules`
is in the current directory, but to resolve it similarly to how Node does
by progressively looking higher in the directory tree.

PR Close #33828
2019-11-19 12:41:24 -08:00
Pete Bacon Darwin a6247aafa1 fix(ivy): i18n - support "\", "`" and "${" sequences in i18n messages (#33820)
Since i18n messages are mapped to `$localize` tagged template strings,
the "raw" version must be properly escaped. Otherwise TS will throw an
error such as:

```
Error: Debug Failure. False expression: Expected argument 'text' to be the normalized (i.e. 'cooked') version of argument 'rawText'.
```

This commit ensures that we properly escape these raw strings before creating
TS AST nodes from them.

PR Close #33820
2019-11-18 16:00:22 -08:00
Pete Bacon Darwin 62f7d0fe5c fix(ivy): i18n - ensure that colons in i18n metadata are not rendered (#33820)
The `:` char is used as a metadata marker in `$localize` messages.
If this char appears in the metadata it must be escaped, as `\:`.
Previously, although the `:` char was being escaped, the TS AST
being generated was not correct and so it was being output double
escaped, which meant that it appeared in the rendered message.

As of TS 3.6.2 the "raw" string can be specified when creating tagged
template AST nodes, so it is possible to correct this.

PR Close #33820
2019-11-18 16:00:22 -08:00
Paul Gschwendtner 15fefdbb8d feat(core): missing-injectable migration should migrate empty object literal providers (#33709)
In View Engine, providers which neither used `useValue`, `useClass`,
`useFactory` or `useExisting`, were interpreted differently.

e.g.

```
{provide: X} -> {provide: X, useValue: undefined}, // this is how it works in View Engine
{provide: X} -> {provide: X, useClass: X}, // this is how it works in Ivy
```

The missing-injectable migration should migrate such providers to the
explicit `useValue` provider. This ensures that there is no unexpected
behavioral change when updating to v9.

PR Close #33709
2019-11-18 15:47:20 -08:00
Keen Yee Liau 9935aa43ad refactor(compiler-cli): Move diagnostics files to language service (#33809)
The following files are consumed only by the language service and do not
have to be in compiler-cli:

1. expression_diagnostics.ts
2. expression_type.ts
3. typescript_symbols.ts
4. symbols.ts

PR Close #33809
2019-11-14 09:29:07 -08:00
George Kalpakas 033aba9351 fix(ngcc): do not emit ES2015 code in ES5 files (#33514)
Previously, ngcc's `Renderer` would add some constants in the processed
files which were emitted as ES2015 code (e.g. `const` declarations).
This would result in invalid ES5 generated code that would break when
run on browsers that do not support the emitted format.

This commit fixes it by adding a `printStatement()` method to
`RenderingFormatter`, which can convert statements to JavaScript code in
a suitable format for the corresponding `RenderingFormatter`.
Additionally, the `translateExpression()` and `translateStatement()`
ngtsc helper methods are augmented to accept an extra hint to know
whether the code needs to be translated to ES5 format or not.

Fixes #32665

PR Close #33514
2019-11-13 13:49:31 -08:00
George Kalpakas 704775168d fix(ngcc): generate correct metadata for classes with getter/setter properties (#33514)
While processing class metadata, ngtsc generates a `setClassMetadata()`
call which (among other things) contains info about property decorators.
Previously, processing getter/setter pairs with some of ngcc's
`ReflectionHost`s resulted in multiple metadata entries for the same
property, which resulted in duplicate object keys, which in turn causes
an error in ES5 strict mode.

This commit fixes it by ensuring that there are no duplicate property
names in the `setClassMetadata()` calls.

In addition, `generateSetClassMetadataCall()` is updated to treat
`ClassMember#decorators: []` the same as `ClassMember.decorators: null`
(i.e. omitting the `ClassMember` from the generated `setClassMetadata()`
call). Alternatively, ngcc's `ReflectionHost`s could be updated to do
this transformation (`decorators: []` --> `decorators: null`) when
reflecting on class members, but this would require changes in many
places and be less future-proof.

For example, given a class such as:

```ts
class Foo {
  @Input() get bar() { return 'bar'; }
  set bar(value: any) {}
}
```

...previously the generated `setClassMetadata()` call would look like:

```ts
ɵsetClassMetadata(..., {
  bar: [{type: Input}],
  bar: [],
});
```

The same class will now result in a call like:

```ts
ɵsetClassMetadata(..., {
  bar: [{type: Input}],
});
```

Fixes #30569

PR Close #33514
2019-11-13 13:49:31 -08:00
George Kalpakas c79d50f38f refactor(compiler-cli): avoid superfluous parenthesis around statements (#33514)
Previously, due to a bug a `Context` with `isStatement: false` could be
returned in places where a `Context` with `isStatement: true` was
requested. As a result, some statements would be unnecessarily wrapped
in parenthesis.

This commit fixes the bug in `Context#withStatementMode` to always
return a `Context` with the correct `isStatement` value. Note that this
does not have any impact on the generated code other than avoiding some
superfluous parenthesis on certain statements.

PR Close #33514
2019-11-13 13:49:30 -08:00
JoostK 15f8638b1c fix(ivy): ensure module scope is rebuild on dependent change (#33522)
During incremental compilations, ngtsc needs to know which metadata
from a previous compilation can be reused, versus which metadata has to
be recomputed as some dependency was updated. Changes to
directives/components should cause the NgModule in which they are
declared to be recompiled, as the NgModule's compilation is dependent
on its directives/components.

When a dependent source file of a directive/component is updated,
however, a more subtle dependency should also cause to NgModule's source
file to be invalidated. During the reconciliation of state from a
previous compilation into the new program, the component's source file
is invalidated because one of its dependency has changed, ergo the
NgModule needs to be invalidated as well. Up until now, this implicit
dependency was not imposed on the NgModule. Additionally, any change to
a dependent file may influence the module scope to change, so all
components within the module must be invalidated as well.

This commit fixes the bug by introducing additional file dependencies,
as to ensure a proper rebuild of the module scope and its components.

Fixes #32416

PR Close #33522
2019-11-12 13:56:30 -08:00
JoostK 6899ee5ddd fix(ivy): recompile component when template changes in ngc watch mode (#33551)
When the Angular compiler is operated through the ngc binary in watch
mode, changing a template in an external file would not cause the
component to be recompiled if Ivy is enabled.

There was a problem with how a cached compiler host was present that was
unaware of the changed resources, therefore failing to trigger a
recompilation of a component whenever its template changes. This commit
fixes the issue by ensuring that information about modified resources is
correctly available to the cached compiler host.

Fixes #32869

PR Close #33551
2019-11-12 13:55:09 -08:00
Keen Yee Liau 8b91ea5532 fix(language-service): Resolve template variable in nested ngFor (#33676)
This commit fixes a bug whereby template variables in nested scope are
not resolved properly and instead are simply typed as `any`.

PR closes https://github.com/angular/vscode-ng-language-service/issues/144

PR Close #33676
2019-11-11 16:06:00 -08:00
Keen Yee Liau a33162bb66 fix(compiler-cli): Pass SourceFile to getFullText() (#33660)
Similar to https://github.com/angular/angular/pull/33633, this commit is
needed to fix an outage with the Angular Kythe indexer.

Crash logs:

```
TypeError: Cannot read property 'text' of undefined
    at NodeObject.getFullText (typescript/stable/lib/typescript.js:121443:57)
    at FactoryGenerator.generate (angular2/rc/packages/compiler-cli/src/ngtsc/shims/src/factory_generator.ts:67:34)
    at GeneratedShimsHostWrapper.getSourceFile (angular2/rc/packages/compiler-cli/src/ngtsc/shims/src/host.ts:88:26)
    at findSourceFile (typescript/stable/lib/typescript.js:90654:29)
    at typescript/stable/lib/typescript.js:90553:85
    at getSourceFileFromReferenceWorker (typescript/stable/lib/typescript.js:90520:34)
    at processSourceFile (typescript/stable/lib/typescript.js:90553:13)
    at processRootFile (typescript/stable/lib/typescript.js:90383:13)
    at typescript/stable/lib/typescript.js:89399:60
    at Object.forEach (typescript/stable/lib/typescript.js:280:30)

```

PR Close #33660
2019-11-07 16:47:07 -08:00
Andrew Scott 7c5c2139ab revert: "fix(ivy): recompile component when template changes in ngc watch mode (#33551)" (#33661)
This reverts commit 8912b11f56.

PR Close #33661
2019-11-07 19:57:56 +00:00
JoostK 8912b11f56 fix(ivy): recompile component when template changes in ngc watch mode (#33551)
When the Angular compiler is operated through the ngc binary in watch
mode, changing a template in an external file would not cause the
component to be recompiled if Ivy is enabled.

There was a problem with how a cached compiler host was present that was
unaware of the changed resources, therefore failing to trigger a
recompilation of a component whenever its template changes. This commit
fixes the issue by ensuring that information about modified resources is
correctly available to the cached compiler host.

Fixes #32869

PR Close #33551
2019-11-07 17:52:58 +00:00
Keen Yee Liau 10583f951d fix(compiler-cli): Fix typo $implict (#33633)
Should be $implicit instead.

PR Close #33633
2019-11-07 01:54:17 +00:00
JoostK e2d7b25e0d fix(ivy): avoid implicit any errors in event handlers (#33550)
When template type checking is configured with `strictDomEventTypes` or
`strictOutputEventTypes` disabled, in compilation units that have
`noImplicitAny` enabled but `strictNullChecks` disabled, a template type
checking error could be produced for certain event handlers.

The error is avoided by letting an event handler in the generated TCB
always have an explicit `any` return type.

Fixes #33528

PR Close #33550
2019-11-06 19:45:45 +00:00
Alan Agius d749dd3ea1 fix(ngcc): handle new `__spreadArrays` tslib helper (#33617)
We already have special cases for the `__spread` helper function and with this change we handle the new tslib helper introduced in version 1.10 `__spreadArrays`.

For more context see: https://github.com/microsoft/tslib/releases/tag/1.10.0

Fixes: #33614

PR Close #33617
2019-11-06 19:43:07 +00:00
Keen Yee Liau 4b62ba9017 fix(compiler-cli): Pass SourceFile to getLeadingTriviaWidth (#33588)
This commit fixes a crash in the Angular Kythe indexer caused by failure
to retrieve `SourceFile` in a `Statement`.

Crash logs:
  TypeError: Cannot read property 'text' of undefined
    at Object.getTokenPosOfNode (typescript/stable/lib/typescript.js:8957:72)
    at NodeObject.getStart (typescript/stable/lib/typescript.js:121419:23)
    at NodeObject.getLeadingTriviaWidth (typescript/stable/lib/typescript.js:121439:25)
    at FactoryGenerator.generate (angular2/rc/packages/compiler-cli/src/ngtsc/shims/src/factory_generator.ts:64:49)
    at GeneratedShimsHostWrapper.getSourceFile (angular2/rc/packages/compiler-cli/src/ngtsc/shims/src/host.ts:88:26)
    at findSourceFile (typescript/stable/lib/typescript.js:90654:29)
    at typescript/stable/lib/typescript.js:90553:85
    at getSourceFileFromReferenceWorker (typescript/stable/lib/typescript.js:90520:34)
    at processSourceFile (typescript/stable/lib/typescript.js:90553:13)
    at processRootFile (typescript/stable/lib/typescript.js:90383:13)

PR Close #33588
2019-11-05 21:02:45 +00:00
Alex Rickabaugh 8d0de89ece refactor(ivy): split `type` into `type`, `internalType` and `adjacentType` (#33533)
When compiling an Angular decorator (e.g. Directive), @angular/compiler
generates an 'expression' to be added as a static definition field
on the class, a 'type' which will be added for that field to the .d.ts
file, and a statement adjacent to the class that calls `setClassMetadata()`.

Previously, the same WrappedNodeExpr of the class' ts.Identifier was used
within each of this situations.

In the ngtsc case, this is proper. In the ngcc case, if the class being
compiled is within an ES5 IIFE, the outer name of the class may have
changed. Thus, the class has both an inner and outer name. The outer name
should continue to be used elsewhere in the compiler and in 'type'.

The 'expression' will live within the IIFE, the `internalType` should be used.
The adjacent statement will also live within the IIFE, the `adjacentType` should be used.

This commit introduces `ReflectionHost.getInternalNameOfClass()` and
`ReflectionHost.getAdjacentNameOfClass()`, which the compiler can use to
query for the correct name to use.

PR Close #33533
2019-11-05 17:25:01 +00:00
Charles Lyding fc8eecad3f fix(compiler-cli): remove unused CLI private exports (#33242)
These exports are no longer used by the CLI since 7.1.0.  Since major versions of the CLI are now locked to major versions of the framework, a CLI user will not be able to use FW 9.0+ on an outdated version (<7.1.0) of the CLI that uses these old APIs.

PR Close #33242
2019-11-01 17:43:47 +00:00
JoostK ce30888a26 feat(ivy): graceful evaluation of unknown or invalid expressions (#33453)
During static evaluation of expressions within ngtsc, it may occur that
certain expressions or just parts thereof cannot be statically
interpreted for some reason. The static interpreter keeps track of the
failure reason and the code path that was evaluated by means of
`DynamicValue`, which will allow descriptive errors. In some situations
however, the static interpreter would throw an exception instead,
resulting in a crash of the compilation. Not only does this cause
non-descriptive errors, more importantly does it prevent the evaluated
result from being partial, i.e. parts of the result can be dynamic if
their value does not have to be statically available to the compiler.

This commit refactors the static interpreter to never throw errors for
certain expressions that it cannot evaluate.

Resolves FW-1582

PR Close #33453
2019-11-01 00:04:02 +00:00
Alex Rickabaugh 38758d856a fix(ivy): don't crash on unknown pipe (#33454)
Previously the compiler would crash if a pipe was encountered which did not
match any pipe in the scope of a template.

This commit introduces a new diagnostic error for unknown pipes instead.

PR Close #33454
2019-10-31 23:43:32 +00:00
Alex Rickabaugh 9db59d010d fix(ivy): don't crash on an unknown localref target (#33454)
Previously the template binder would crash when encountering an unknown
localref (# reference) such as `<div #ref="foo">` when no directive has
`exportAs: "foo"`.

With this commit, the compiler instead generates a template diagnostic error
informing the user about the invalid reference.

PR Close #33454
2019-10-31 23:43:32 +00:00
Pete Bacon Darwin 1d141a8ab1 fix(compiler-cli): attach the correct `viaModule` to namespace imports (#33495)
Previously declarations that were imported via a namespace import
were given the same `bestGuessOwningModule` as the context
where they were imported to. This causes problems with resolving
`ModuleWithProviders` that have a type that has been imported in
this way, causing errors like:

```
ERROR in Symbol UIRouterModule declared in
.../@uirouter/angular/uiRouterNgModule.d.ts
is not exported from
.../@uirouter/angular/uirouter-angular.d.ts
(import into .../src/app/child.module.ts)
```

This commit modifies the `TypescriptReflectionHost.getDirectImportOfIdentifier()`
method so that it also understands how to attach the correct `viaModule` to
the identifier of the namespace import.

Resolves #32166

PR Close #33495
2019-10-31 22:25:48 +00:00
Keen Yee Liau 1de757993d fix(language-service): Improve signature selection for pipes with args (#33456)
Pipes with arguments like `slice:0` or `slice:0:1` should not produce
diagnostic errors.

PR closes https://github.com/angular/vscode-ng-language-service/issues/345

PR Close #33456
2019-10-29 14:40:35 -07:00
crisbeto 14c4b1b205 refactor(ivy): remove ngBaseDef (#33264)
Removes `ngBaseDef` from the compiler and any runtime code that was still referring to it. In the cases where we'd previously generate a base def we now generate a definition for an abstract directive.

PR Close #33264
2019-10-25 13:11:34 -07:00
JoostK 8d15bfa6ee fix(ivy): allow abstract directives to have an invalid constructor (#32987)
For abstract directives, i.e. directives without a selector, it may
happen that their constructor is called explicitly from a subclass,
hence its parameters are not required to be valid for Angular's DI
purposes. Prior to this commit however, having an abstract directive
with a constructor that has parameters that are not eligible for
Angular's DI would produce a compilation error.

A similar scenario may occur for `@Injectable`s, where an explicit
`use*` definition allows for the constructor to be irrelevant. For
example, the situation where `useFactory` is specified allows for the
constructor to be called explicitly with any value, so its constructor
parameters are not required to be valid. For `@Injectable`s this is
handled by generating a DI factory function that throws.

This commit implements the same solution for abstract directives, such
that a compilation error is avoided while still producing an error at
runtime if the type is instantiated implicitly by Angular's DI
mechanism.

Fixes #32981

PR Close #32987
2019-10-25 12:13:23 -07:00
Alex Rickabaugh b381497126 feat(ngcc): add a migration for undecorated child classes (#33362)
In Angular View Engine, there are two kinds of decorator inheritance:

1) both the parent and child classes have decorators

This case is supported by InheritDefinitionFeature, which merges some fields
of the definitions (such as the inputs or queries).

2) only the parent class has a decorator

If the child class is missing a decorator, the compiler effectively behaves
as if the parent class' decorator is applied to the child class as well.
This is the "undecorated child" scenario, and this commit adds a migration
to ngcc to support this pattern in Ivy.

This migration has 2 phases. First, the NgModules of the application are
scanned for classes in 'declarations' which are missing decorators, but
whose base classes do have decorators. These classes are the undecorated
children. This scan is performed recursively, so even if a declared class
has a base class that itself inherits a decorator, this case is handled.

Next, a synthetic decorator (either @Component or @Directive) is created
on the child class. This decorator copies some critical information such
as 'selector' and 'exportAs', as well as supports any decorated fields
(@Input, etc). A flag is passed to the decorator compiler which causes a
special feature `CopyDefinitionFeature` to be included on the compiled
definition. This feature copies at runtime the remaining aspects of the
parent definition which `InheritDefinitionFeature` does not handle,
completing the "full" inheritance of the child class' decorator from its
parent class.

PR Close #33362
2019-10-25 09:16:50 -07:00
JoostK 2e5e1dd5f5 refactor(ngcc): rework undecorated parent migration (#33362)
Previously, the (currently disabled) undecorated parent migration in
ngcc would produce errors when a base class could not be determined
statically or when a class extends from a class in another package. This
is not ideal, as it would cause the library to fail compilation without
a workaround, whereas those problems are not guaranteed to cause issues.

Additionally, inheritance chains were not handled. This commit reworks
the migration to address these limitations.

PR Close #33362
2019-10-25 09:16:50 -07:00
JoostK 3858b26211 refactor(ivy): mark synthetic decorators explicitly (#33362)
In ngcc's migration system, synthetic decorators can be injected into a
compilation to ensure that certain classes are compiled with Angular
logic, where the original library code did not include the necessary
decorators. Prior to this change, synthesized decorators would have a
fake AST structure as associated node and a made-up identifier. In
theory, this may introduce issues downstream:

1) a decorator's node is used for diagnostics, so it must have position
information. Having fake AST nodes without a position is therefore a
problem. Note that this is currently not a problem in practice, as
injected synthesized decorators would not produce any diagnostics.

2) the decorator's identifier should refer to an imported symbol.
Therefore, it is required that the symbol is actually imported.
Moreover, bundle formats such as UMD and CommonJS use namespaces for
imports, so a bare `ts.Identifier` would not be suitable to use as
identifier. This was also not a problem in practice, as the identifier
is only used in the `setClassMetadata` generated code, which is omitted
for synthetically injected decorators.

To remedy these potential issues, this commit makes a decorator's
identifier optional and switches its node over from a fake AST structure
to the class' name.

PR Close #33362
2019-10-25 09:16:49 -07:00
JoostK 31b9492951 feat(ngcc): migrate services that are missing `@Injectable()` (#33362)
A class that is provided as Angular service is required to have an
`@Injectable()` decorator so that the compiler generates its injectable
definition for the runtime. Applications are automatically migrated
using the "missing-injectable" schematic, however libraries built for
older version of Angular may not yet satisfy this requirement.

This commit ports the "missing-injectable" schematic to a migration that
is ran when ngcc is processing a library. This ensures that any service
that is provided from an NgModule or Directive/Component will have an
`@Injectable()` decorator.

PR Close #33362
2019-10-25 09:16:49 -07:00
JoostK 0d9be22023 feat(ivy): strictness flags for template type checking (#33365)
The template type checking abilities of the Ivy compiler are far more
advanced than the level of template type checking that was previously
done for Angular templates. Up until now, a single compiler option
called "fullTemplateTypeCheck" was available to configure the level
of template type checking. However, now that more advanced type checking
is being done, new errors may surface that were previously not reported,
in which case it may not be feasible to fix all new errors at once.

Having only a single option to disable a large number of template type
checking capabilities does not allow for incrementally addressing newly
reported types of errors. As a solution, this commit introduces some new
compiler options to be able to enable/disable certain kinds of template
type checks on a fine-grained basis.

PR Close #33365
2019-10-24 16:16:14 -07:00
Alex Rickabaugh 113411c9b0 fix(ivy): split checkTypeOfReferences into DOM and non-DOM flags. (#33365)
View Engine correctly infers the type of local refs to directives or to
<ng-template>s, just not to DOM nodes. This commit splits the
checkTypeOfReferences flag into two separate halves, allowing the compiler
to align with this behavior.

PR Close #33365
2019-10-24 16:16:14 -07:00
JoostK d8ce2129d5 feat(ivy): add flag to disable checking of text attributes (#33365)
For elements that have a text attribute, it may happen that the element
is matched by a directive that consumes the attribute as an input. In
that case, the template type checker will validate the correctness of
the attribute with respect to the directive's declared type of the
input, which would typically be `boolean` for the `disabled` input.
Since empty attributes are assigned the empty string at runtime, the
template type checker would report an error for this template.

This commit introduces a strictness flag to help alleviate this
particular situation, effectively ignoring text attributes that happen
to be consumed by a directive.

PR Close #33365
2019-10-24 16:16:14 -07:00
JoostK 4aa51b751b feat(ivy): verify whether TypeScript version is supported (#33377)
During the creation of an Angular program in the compiler, a check is
done to verify whether the version of TypeScript is considered
supported, producing an error if it is not. This check was missing in
the Ivy compiler, so users may have ended up running an unsupported
TypeScript version inadvertently.

Resolves FW-1643

PR Close #33377
2019-10-24 15:46:23 -07:00
JoostK a42057d0f8 fix(ivy): support abstract directives in template type checking (#33131)
Recently it was made possible to have a directive without selector,
which are referred to as abstract directives. Such directives should not
be registered in an NgModule, but can still contain decorators for
inputs, outputs, queries, etc. The information from these decorators and
the `@Directive()` decorator itself needs to be registered with the
central `MetadataRegistry` so that other areas of the compiler can
request information about a given directive, an example of which is the
template type checker that needs to know about the inputs and outputs of
directives.

Prior to this change, however, abstract directives would only register
themselves with the `MetadataRegistry` as being an abstract directive,
without all of its other metadata like inputs and outputs. This meant
that the template type checker was unable to resolve the inputs and
outputs of these abstract directives, therefore failing to check them
correctly. The typical error would be that some property does not exist
on a DOM element, whereas said property should have been bound to the
abstract directive's input.

This commit fixes the problem by always registering the metadata of a
directive or component with the `MetadataRegistry`. Tests have been
added to ensure abstract directives are handled correctly in the
template type checker, together with tests to verify the form of
abstract directives in declaration files.

Fixes #30080

PR Close #33131
2019-10-24 12:44:30 -07:00
Alex Rickabaugh 63f0ded5cf fix(ivy): fix broken typechecking test on Windows (#33376)
One of the template type-checking tests relies on the newline character,
which is different on Windows. This commit fixes the issue.

PR Close #33376
2019-10-24 11:13:01 -07:00
Alex Rickabaugh f1269d98dc feat(ivy): input type coercion for template type-checking (#33243)
Often the types of an `@Input`'s field don't fully reflect the types of
assignable values. This can happen when an input has a getter/setter pair
where the getter always returns a narrow type, and the setter coerces a
wider value down to the narrow type.

For example, you could imagine an input of the form:

```typescript
@Input() get value(): string {
  return this._value;
}

set value(v: {toString(): string}) {
  this._value = v.toString();
}
```

Here, the getter always returns a `string`, but the setter accepts any value
that can be `toString()`'d, and coerces it to a string.

Unfortunately TypeScript does not actually support this syntax, and so
Angular users are forced to type their setters as narrowly as the getters,
even though at runtime the coercion works just fine.

To support these kinds of patterns (e.g. as used by Material), this commit
adds a compiler feature called "input coercion". When a binding is made to
the 'value' input of a directive like MatInput, the compiler will look for a
static field with the name ngAcceptInputType_value. If such a field is found
the type-checking expression for the input will use the static field's type
instead of the type for the @Input field,allowing for the expression of a
type conversion between the binding expression and the value being written
to the input's field.

To solve the case above, for example, MatInput might write:

```typescript
class MatInput {
  // rest of the directive...

  static ngAcceptInputType_value: {toString(): string};
}
```

FW-1475 #resolve

PR Close #33243
2019-10-24 09:49:38 -07:00
JoostK e2211ed211 fix(ivy): handle method calls of local variables in template type checker (#33132)
Prior to this change, a method call of a local template variable would
incorrectly be considered a call to a method on the component class.
For example, this pattern would produce an error:

```
<ng-template let-method>{{ method(1) }}</ng-template>
```

Here, the method call should be targeting the `$implicit` variable on
the template context, not the component class. This commit corrects the
behavior by first resolving methods in the template before falling back
on the component class.

Fixes #32900

PR Close #33132
2019-10-23 13:33:15 -07:00
Alex Rickabaugh 77240e1b60 fix(ivy): align VE + Ivy #ref types in fullTemplateTypeCheck: false (#33261)
In View Engine, with fullTemplateTypeCheck mode disabled, the type of any
inferred based on the entity being referenced. This is a bug, since the
goal with fullTemplateTypeCheck: false is for Ivy and VE to be aligned in
terms of type inference.

This commit adds a 'checkTypeOfReference' flag in the TypeCheckingConfig
to control this inference, and sets it to false when fullTemplateTypeCheck
is disabled.

PR Close #33261
2019-10-23 13:02:32 -07:00
Alex Rickabaugh c4733c15c0 feat(ivy): enable re-export of the compilation scope of NgModules privately (#33177)
This commit refactors the aliasing system to support multiple different
AliasingHost implementations, which control specific aliasing behavior
in ngtsc (see the README.md).

A new host is introduced, the `PrivateExportAliasingHost`. This solves a
longstanding problem in ngtsc regarding support for "monorepo" style private
libraries. These are libraries which are compiled separately from the main
application, and depended upon through TypeScript path mappings. Such
libraries are frequently not in the Angular Package Format and do not have
entrypoints, but rather make use of deep import style module specifiers.
This can cause issues with ngtsc's ability to import a directive given the
module specifier of its NgModule.

For example, if the application uses a directive `Foo` from such a library
`foo`, the user might write:

```typescript
import {FooModule} from 'foo/module';
```

In this case, foo/module.d.ts is path-mapped into the program. Ordinarily
the compiler would see this as an absolute module specifier, and assume that
the `Foo` directive can be imported from the same specifier. For such non-
APF libraries, this assumption fails. Really `Foo` should be imported from
the file which declares it, but there are two problems with this:

1. The compiler would have to reverse the path mapping in order to determine
   a path-mapped path to the file (maybe foo/dir.d.ts).
2. There is no guarantee that the file containing the directive is path-
   mapped in the program at all.

The compiler would effectively have to "guess" 'foo/dir' as a module
specifier, which may or may not be accurate depending on how the library and
path mapping are set up.

It's strongly desirable that the compiler not break its current invariant
that the module specifier given by the user for the NgModule is always the
module specifier from which directives/pipes are imported. Thus, for any
given NgModule from a particular module specifier, it must always be
possible to import any directives/pipes from the same specifier, no matter
how it's packaged.

To make this possible, when compiling a file containing an NgModule, ngtsc
will automatically add re-exports for any directives/pipes not yet exported
by the user, with a name of the form: ɵngExportɵModuleNameɵDirectiveName

This has several effects:

1. It guarantees anyone depending on the NgModule will be able to import its
   directives/pipes from the same specifier.
2. It maintains a stable name for the exported symbol that is safe to depend
   on from code on NPM. Effectively, this private exported name will be a
   part of the package's .d.ts API, and cannot be changed in a non-breaking
   fashion.

Fixes #29361
FW-1610 #resolve

PR Close #33177
2019-10-22 13:14:31 -04:00
Matias Niemelä c0ebecf54d revert: feat(ivy): input type coercion for template type-checking (#33243) (#33299)
This reverts commit 1b4eaea6d4.

PR Close #33299
2019-10-21 12:00:24 -04:00
George Kalpakas d7dc6cbc04 refactor(compiler-cli): remove unused method `FileSystem#mkdir()` (#33237)
Previously, the `FileSystem` abstraction featured a `mkdir()` method. In
`NodeJSFileSystem` (the default `FileSystem` implementation used in
actual code), the method behaved similar to Node.js' `fs.mkdirSync()`
(i.e. failing if any parent directory is missing or the directory exists
already). In contrast, `MockFileSystem` (which is the basis or mock
`FileSystem` implementations used in tests) implemented `mkdir()` as an
alias to `ensureDir()`, which behaved more like Node.js'
`fs.mkdirSync()` with the `recursive` option set to `true` (i.e.
creating any missing parent directories and succeeding if the directory
exists already).

This commit fixes this inconsistency by removing the `mkdir()` method,
which was not used anyway and only keeping `ensureDir()` (which is
consistent across our different `FileSystem` implementations).

PR Close #33237
2019-10-21 11:26:57 -04:00
George Kalpakas 8017229292 fix(ngcc): do not fail when multiple workers try to create the same directory (#33237)
When `ngcc` is running in parallel mode (usually when run from the
command line) and the `createNewEntryPointFormats` option is set to true
(e.g. via the `--create-ivy-entry-points` command line option), it can
happen that two workers end up trying to create the same directory at
the same time. This can lead to a race condition, where both check for
the directory existence, see that the directory does not exist and both
try to create it, with the second failing due the directory's having
already been created by the first one. Note that this only affects
directories and not files, because `ngcc` tasks operate on different
sets of files.

This commit avoids this race condition by allowing `FileSystem`'s
`ensureDir()` method to not fail if one of the directories it is trying
to create already exists (and is indeed a directory). This is fine for
the `ensureDir()` method, since it's purpose is to ensure that the
specified directory exists. So, even if the `mkdir()` call failed
(because the directory exists), `ensureDir()` has still completed its
mission.

Related discussion: https://github.com/angular/angular/pull/33049#issuecomment-540485703
FW-1635 #resolve

PR Close #33237
2019-10-21 11:26:57 -04:00
Alex Rickabaugh 1b4eaea6d4 feat(ivy): input type coercion for template type-checking (#33243)
Often the types of an `@Input`'s field don't fully reflect the types of
assignable values. This can happen when an input has a getter/setter pair
where the getter always returns a narrow type, and the setter coerces a
wider value down to the narrow type.

For example, you could imagine an input of the form:

```typescript
@Input() get value(): string {
  return this._value;
}

set value(v: {toString(): string}) {
  this._value = v.toString();
}
```

Here, the getter always returns a `string`, but the setter accepts any value
that can be `toString()`'d, and coerces it to a string.

Unfortunately TypeScript does not actually support this syntax, and so
Angular users are forced to type their setters as narrowly as the getters,
even though at runtime the coercion works just fine.

To support these kinds of patterns (e.g. as used by Material), this commit
adds a compiler feature called "input coercion". When a binding is made to
the 'value' input of a directive like MatInput, the compiler will look for a
static function with the name ngCoerceInput_value. If such a function is
found, the type-checking expression for the input will be wrapped in a call
to the function, allowing for the expression of a type conversion between
the binding expression and the value being written to the input's field.

To solve the case above, for example, MatInput might write:

```typescript
class MatInput {
  // rest of the directive...

  static ngCoerceInput_value(value: {toString(): string}): string {
    return null!;
  }
}
```

FW-1475 #resolve

PR Close #33243
2019-10-21 11:25:07 -04:00
Alex Rickabaugh d4db746898 feat(ivy): give shim generation its own compiler options (#33256)
As a hack to get the Ivy compiler ngtsc off the ground, the existing
'allowEmptyCodegenFiles' option was used to control generation of ngfactory
and ngsummary shims during compilation. This option was selected since it's
enabled in google3 but never enabled in external projects.

As ngtsc is now mature and the role shims play in compilation is now better
understood across the ecosystem, this commit introduces two new compiler
options to control shim generation:

* generateNgFactoryShims controls the generation of .ngfactory shims.
* generateNgSummaryShims controls the generation of .ngsummary shims.

The 'allowEmptyCodegenFiles' option is still honored if either of the above
flags are not set explicitly.

PR Close #33256
2019-10-21 11:24:26 -04:00
crisbeto 0e08ad628a fix(ivy): throw better error for missing generic type in ModuleWithProviders (#33187)
Currently if a `ModuleWithProviders` is missng its generic type, we throw a cryptic error like:

```
error TS-991010: Value at position 3 in the NgModule.imports of TodosModule is not a reference: [object Object]
```

These changes add a better error to make it easier to debug.

PR Close #33187
2019-10-18 14:49:54 -04:00
JoostK 6958d11d95 feat(ivy): type checking of event bindings (#33125)
Until now, the template type checker has not checked any of the event
bindings that could be present on an element, for example

```
<my-cmp
  (changed)="handleChange($event)"
  (click)="handleClick($event)"></my-cmp>
```

has two event bindings: the `change` event corresponding with an
`@Output()` on the `my-cmp` component and the `click` DOM event.

This commit adds functionality to the template type checker in order to
type check both kind of event bindings. This means that the correctness
of the bindings expressions, as well as the type of the `$event`
variable will now be taken into account during template type checking.

Resolves FW-1598

PR Close #33125
2019-10-18 14:41:53 -04:00
Igor Minar 86e1e6c082 feat: typescript 3.6 support (#32946)
BREAKING CHANGE: typescript 3.4 and 3.5 are no longer supported, please update to typescript 3.6

Fixes #32380

PR Close #32946
2019-10-18 13:15:16 -04:00
Alex Rickabaugh de445709d4 fix(ivy): use ReflectionHost to check exports when writing an import (#33192)
This commit fixes ngtsc's import generator to use the ReflectionHost when
looking through the exports of an ES module to find the export of a
particular declaration that's being imported. This is necessary because
some module formats like CommonJS have unusual export mechanics, and the
normal TypeScript ts.TypeChecker does not understand them.

This fixes an issue with ngcc + CommonJS where exports were not being
enumerated correctly.

FW-1630 #resolve

PR Close #33192
2019-10-17 19:43:39 -04:00
Kara Erickson 1a8bd22fa3 refactor(core): rename ngLocaleIdDef to ɵloc (#33212)
LocaleID defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.

This commit adds the prefix and shortens the name from
ngLocaleIdDef to loc. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.

PR Close #33212
2019-10-17 16:06:16 -04:00
JoostK 08cb2fa80f fix(ivy): ignore non-property bindings to inputs in template type checker (#33130)
Prior to this change, the template type checker would incorrectly bind
non-property bindings such as `[class.strong]`, `[style.color]` and
`[attr.enabled]` to directive inputs of the same name. This is
undesirable, as those bindings are never actually bound to the inputs at
runtime.

Fixes #32099
Fixes #32496
Resolves FW-1596

PR Close #33130
2019-10-17 14:15:36 -04:00
Kara Erickson 86104b82b8 refactor(core): rename ngInjectableDef to ɵprov (#33151)
Injectable defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.

This commit adds the prefix and shortens the name from
ngInjectableDef to "prov" (for "provider", since injector defs
are known as "inj"). This is because property names cannot
be minified by Uglify without turning on property mangling
(which most apps have turned off) and are thus size-sensitive.

PR Close #33151
2019-10-16 16:36:19 -04:00
Kara Erickson cda9248b33 refactor(core): rename ngInjectorDef to ɵinj (#33151)
Injector defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.

This commit adds the prefix and shortens the name from
ngInjectorDef to inj. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.

PR Close #33151
2019-10-16 16:36:19 -04:00
Kara Erickson fc93dafab1 refactor(core): rename ngModuleDef to ɵmod (#33142)
Module defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.

This commit adds the prefix and shortens the name from
ngModuleDef to mod. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.

PR Close #33142
2019-10-14 23:08:10 +00:00
Kara Erickson d62eff7316 refactor(core): rename ngPipeDef to ɵpipe (#33142)
Pipe defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.

This commit adds the prefix and shortens the name from
ngPipeDef to pipe. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.

PR Close #33142
2019-10-14 23:08:10 +00:00
Kara Erickson 0de2a5e408 refactor(core): rename ngFactoryDef to ɵfac (#33116)
Factory defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.

This commit adds the prefix and shortens the name from
ngFactoryDef to fac. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.

Note that the other "defs" (ngPipeDef, etc) will be
prefixed and shortened in follow-up PRs, in an attempt to
limit how large and conflict-y this change is.

PR Close #33116
2019-10-14 20:27:25 +00:00
JoostK cd7b199219 feat(ivy): check regular attributes that correspond with directive inputs (#33066)
Prior to this change, a static attribute that corresponds with a
directive's input would not be type-checked against the type of the
input. This is unfortunate, as a static value always has type `string`,
whereas the directive's input type might be something different. This
typically occurs when a developer forgets to enclose the attribute name
in brackets to make it a property binding.

This commit lets static attributes be considered as bindings with string
values, so that they will be properly type-checked.

PR Close #33066
2019-10-14 20:25:20 +00:00
JoostK ece0b2d7ce feat(ivy): disable strict null checks for input bindings (#33066)
This commit introduces an internal config option of the template type
checker that allows to disable strict null checks of input bindings to
directives. This may be particularly useful when a directive is from a
library that is not compiled with `strictNullChecks` enabled.

Right now, strict null checks are enabled when  `fullTemplateTypeCheck`
is turned on, and disabled when it's off. In the near future, several of
the internal configuration options will be added as public Angular
compiler options so that users can have fine-grained control over which
areas of the template type checker to enable, allowing for a more
incremental migration strategy.

PR Close #33066
2019-10-14 20:25:20 +00:00
JoostK 50bf17aca0 fix(ivy): do not always accept `undefined` for directive inputs (#33066)
Prior to this change, the template type checker would always allow a
value of type `undefined` to be passed into a directive's inputs, even
if the input's type did not allow for it. This was due to how the type
constructor for a directive was generated, where a `Partial` mapped
type was used to allow for inputs to be unset. This essentially
introduces the `undefined` type as acceptable type for all inputs.

This commit removes the `Partial` type from the type constructor, which
means that we can no longer omit any properties that were unset.
Instead, any properties that are not set will still be included in the
type constructor call, having their value assigned to `any`.

Before:

```typescript
class NgForOf<T> {
  static ngTypeCtor<T>(init: Partial<Pick<NgForOf<T>,
    'ngForOf'|'ngForTrackBy'|'ngForTemplate'>>): NgForOf<T>;
}

NgForOf.ngTypeCtor(init: {ngForOf: ['foo', 'bar']});
```

After:

```typescript
class NgForOf<T> {
  static ngTypeCtor<T>(init: Pick<NgForOf<T>,
    'ngForOf'|'ngForTrackBy'|'ngForTemplate'>): NgForOf<T>;
}

NgForOf.ngTypeCtor(init: {
  ngForOf: ['foo', 'bar'],
  ngForTrackBy: null as any,
  ngForTemplate: null as any,
});
```

This change only affects generated type check code, the generated
runtime code is not affected.

Fixes #32690
Resolves FW-1606

PR Close #33066
2019-10-14 20:25:20 +00:00
Andrius 39587ad127 fix(compiler-cli): resolve type of exported *ngIf variable. (#33016)
Currently, method `getVarDeclarations()` does not try to resolve the type of
exported variable from *ngIf directive. It always returns `any` type.
By resolving the real type of exported variable, it is now possible to use this
type information in language service and provide completions, go to definition
and quick info functionality in expressions that use exported variable.
Also language service will provide more accurate diagnostic errors during
development.

PR Close #33016
2019-10-14 20:24:43 +00:00
Ayaz Hafiz b04488d692 feat(compiler): record absolute span of template expressions in parser (#31897)
Currently, the spans of expressions are recorded only relative to the
template node that they reside in, not their source file.

Introduce a `sourceSpan` property on expression ASTs that records the
location of an expression relative to the entire source code file that
it is in. This may allow for reducing duplication of effort in
ngtsc/typecheck/src/diagnostics later on as well.

Child of #31898

PR Close #31897
2019-10-14 20:14:16 +00:00
Kara Erickson 1a67d70bf8 refactor(core): rename ngDirectiveDef to ɵdir (#33110)
Directive defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.

This commit adds the prefix and shortens the name from
ngDirectiveDef to dir. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.

Note that the other "defs" (ngFactoryDef, etc) will be
prefixed and shortened in follow-up PRs, in an attempt to
limit how large and conflict-y this change is.

PR Close #33110
2019-10-14 16:20:11 +00:00
JoostK d8249d1230 feat(ivy): better error messages for unknown components (#33064)
For elements in a template that look like custom elements, i.e.
containing a dash in their name, the template type checker will now
issue an error with instructions on how the resolve the issue.
Additionally, a property binding to a non-existent property will also
produce a more descriptive error message.

Resolves FW-1597

PR Close #33064
2019-10-14 16:19:13 +00:00
Kara Erickson 64fd0d6db9 refactor(core): rename ngComponentDef to ɵcmp (#33088)
Component defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.

This commit adds the prefix and shortens the name from
`ngComponentDef` to `cmp`. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.

Note that the other "defs" (ngDirectiveDef, etc) will be
prefixed and shortened in follow-up PRs, in an attempt to
limit how large and conflict-y this change is.

PR Close #33088
2019-10-11 15:45:22 -07:00
Andrius 2ddc851090 fix(compiler-cli): produce diagnostic messages in expression of PrefixNot node. (#33087)
PR Close #33087
2019-10-10 15:25:46 -07:00
Danny Skoog 6ab5f3648a refactor: utilize type narrowing (#33075)
PR Close #33075
2019-10-10 15:18:44 -07:00
Pete Bacon Darwin f640a4a494 fix(ivy): i18n - turn on legacy message-id support by default (#33053)
For v9 we want the migration to the new i18n to be as
simple as possible.

Previously the developer had to positively choose to use
legacy messsage id support in the case that their translation
files had not been migrated to the new format by setting the
`legacyMessageIdFormat` option in tsconfig.json to the format
of their translation files.

Now this setting has been changed to `enableI18nLegacyMessageFormat`
as is a boolean that defaults to `true`. The format is then read from
the `i18nInFormat` option, which was previously used to trigger translations
in the pre-ivy angular compiler.

PR Close #33053
2019-10-10 13:58:30 -07:00
Pete Bacon Darwin bcbf3e4123 feat(ivy): i18n - render legacy message ids in `$localize` if requested (#32937)
The `$localize` library uses a new message digest function for
computing message ids. This means that translations in legacy
translation files will no longer match the message ids in the code
and so will not be translated.

This commit adds the ability to specify the format of your legacy
translation files, so that the appropriate message id can be rendered
in the `$localize` tagged strings. This results in larger code size
and requires that all translations are in the legacy format.

Going forward the developer should migrate their translation files
to use the new message id format.

PR Close #32937
2019-10-03 12:12:55 -07:00
Martin Probst 5332b04f35 build: TypeScript 3.6 compatibility. (#32908)
This PR updates Angular to compile with TypeScript 3.6 while retaining
compatibility with TS3.5. We achieve this by inserting several `as any`
casts for compatiblity around `ts.CompilerHost` APIs.

PR Close #32908
2019-10-03 09:09:11 -07:00
Pete Bacon Darwin d24ade91b8 fix(ivy): i18n - support colons in $localize metadata (#32867)
Metadata blocks are delimited by colons. Previously the code naively just
looked for the next colon in the string as the end marker.

This commit supports escaping colons within the metadata content.
The Angular compiler has been updated to add escaping as required.

PR Close #32867
2019-10-02 14:52:00 -07:00
Pete Bacon Darwin 9b15588188 refactor(ivy): i18n - move marker block serialization to helpers (#32867)
Previously the metadata and placeholder blocks were serialized in
a variety of places. Moreover the code for creating the `LocalizedString`
AST node was doing serialization, which break the separation of concerns.

Now this is all done by the code that renders the AST and is refactored into
helper functions to avoid repeating the behaviour.

PR Close #32867
2019-10-02 14:52:00 -07:00
crisbeto 4e35e348af refactor(ivy): generate ngFactoryDef for injectables (#32433)
With #31953 we moved the factories for components, directives and pipes into a new field called `ngFactoryDef`, however I decided not to do it for injectables, because they needed some extra logic. These changes set up the `ngFactoryDef` for injectables as well.

For reference, the extra logic mentioned above is that for injectables we have two code paths:

1. For injectables that don't configure how they should be instantiated, we create a `factory` that proxies to `ngFactoryDef`:

```
// Source
@Injectable()
class Service {}

// Output
class Service {
  static ngInjectableDef = defineInjectable({
    factory: () => Service.ngFactoryFn(),
  });

  static ngFactoryFn: (t) => new (t || Service)();
}
```

2. For injectables that do configure how they're created, we keep the `ngFactoryDef` and generate the factory based on the metadata:

```
// Source
@Injectable({
  useValue: DEFAULT_IMPL,
})
class Service {}

// Output
export class Service {
  static ngInjectableDef = defineInjectable({
    factory: () => DEFAULT_IMPL,
  });

  static ngFactoryFn: (t) => new (t || Service)();
}
```

PR Close #32433
2019-10-02 13:04:26 -07:00
cran-cg f6d66671b6 fix(compiler-cli): fix typo in diagnostic template info. (#32684)
Fixes #32662

PR Close #32684
2019-09-16 08:59:48 -07:00
JoostK 2279cb8dc0 refactor(ngcc): move `ClassSymbol` to become `NgccClassSymbol` (#32539)
PR Close #32539
2019-09-12 11:12:10 -07:00
JoostK a64eded521 fix(ivy): capture template source mapping details during preanalysis (#32544)
Prior to this change, the template source mapping details were always
built during the analysis phase, under the assumption that pre-analysed
templates would always correspond with external templates. This has
turned out to be a false assumption, as inline templates are also
pre-analyzed to be able to preload any stylesheets included in the
template.

This commit fixes the bug by capturing the template source mapping
details at the moment the template is parsed, which is either during the
preanalysis phase when preloading is available, or during the analysis
phase when preloading is not supported.

Tests have been added to exercise the template error mapping in
asynchronous compilations where preloading is enabled, similar to how
the CLI performs compilations.

Fixes #32538

PR Close #32544
2019-09-09 19:10:34 -04:00
Pete Bacon Darwin fa79f51645 refactor(ivy): update the compiler to emit `$localize` tags (#31609)
This commit changes the Angular compiler (ivy-only) to generate `$localize`
tagged strings for component templates that use `i18n` attributes.

BREAKING CHANGE

Since `$localize` is a global function, it must be included in any applications
that use i18n. This is achieved by importing the `@angular/localize` package
into an appropriate bundle, where it will be executed before the renderer
needs to call `$localize`. For CLI based projects, this is best done in
the `polyfills.ts` file.

```ts
import '@angular/localize';
```

For non-CLI applications this could be added as a script to the index.html
file or another suitable script file.

PR Close #31609
2019-08-30 12:53:26 -07:00
JoostK 4161d19374 test(ivy): normalize rooted paths to include a drive letter in Windows (#31996)
The Angular compiler has an emulation system for various kinds of
filesystems and runs its testcases for all those filesystems. This
allows to verify that the compiler behaves correctly in all of the
supported platforms, without needing to run the tests on the actual
platforms.

Previously, the emulated Windows mode would normalize rooted paths to
always include a drive letter, whereas the native mode did not perform
this normalization. The consequence of this discrepancy was that running
the tests in native Windows was behaving differently compared to how
emulated Windows mode behaves, potentially resulting in test failures
in native Windows that would succeed for emulated Windows.

This commit adds logic to ensure that paths are normalized equally for
emulated Windows and native Windows mode, therefore resolving the
discrepancy.

PR Close #31996
2019-08-29 12:38:02 -07:00
Kristiyan Kostadinov c885178d5f refactor(ivy): move directive, component and pipe factories to ngFactoryFn (#31953)
Reworks the compiler to output the factories for directives, components and pipes under a new static field called `ngFactoryFn`, instead of the usual `factory` property in their respective defs. This should eventually allow us to inject any kind of decorated class (e.g. a pipe).

**Note:** these changes are the first part of the refactor and they don't include injectables. I decided to leave injectables for a follow-up PR, because there's some more cases we need to handle when it comes to their factories. Furthermore, directives, components and pipes make up most of the compiler output tests that need to be refactored and it'll make follow-up PRs easier to review if the tests are cleaned up now.

This is part of the larger refactor for FW-1468.

PR Close #31953
2019-08-27 13:57:00 -07:00
Paul Gschwendtner 4f7c971ee7 fix(ivy): ngtsc throws if "flatModuleOutFile" is set to null (#32235)
In ngc is was valid to set the "flatModuleOutFile" option to "null". This is sometimes
necessary if a tsconfig extends from another one but the "fatModuleOutFile" option
needs to be unset (note that "undefined" does not exist as value in JSON)

Now if ngtsc is used to compile the project, ngtsc will fail with an error because it
tries to do string manipulation on the "flatModuleOutFile". This happens because
ngtsc only skips flat module indices if the option is set to "undefined".

Since this is not compatible with what was supported in ngc and such exceptions
should be avoided, the flat module check is now aligned with ngc.

```
TypeError: Cannot read property 'replace' of null
    at Object.normalizeSeparators (/home/circleci/project/node_modules/@angular/compiler-cli/src/ngtsc/util/src/path.js:35:21)
    at new NgtscProgram (/home/circleci/project/node_modules/@angular/compiler-cli/src/ngtsc/program.js:126:52)
```

Additionally setting the `flatModuleOutFile` option to an empty string
currently results in unexpected behavior. No errors is thrown, but the
flat module index file will be `.ts` (no file name; just extension).

This is now also fixed by treating an empty string similarly to
`null`.

PR Close #32235
2019-08-22 10:14:38 -07:00
Alex Rickabaugh 0677cf0cbe feat(ivy): use the schema registry to check DOM bindings (#32171)
Previously, ngtsc attempted to use the .d.ts schema for HTML elements to
check bindings to DOM properties. However, the TypeScript lib.dom.d.ts
schema does not perfectly align with the Angular DomElementSchemaRegistry,
and these inconsistencies would cause issues in apps. There is also the
concern of supporting both CUSTOM_ELEMENTS_SCHEMA and NO_ERRORS_SCHEMA which
would have been very difficult to do in the existing system.

With this commit, the DomElementSchemaRegistry is employed in ngtsc to check
bindings to the DOM. Previous work on producing template diagnostics is used
to support generation of this different kind of error with the same high
quality of error message.

PR Close #32171
2019-08-22 10:12:45 -07:00
Alex Rickabaugh 0287b234ea feat(ivy): convert all ngtsc diagnostics to ts.Diagnostics (#31952)
Historically, the Angular Compiler has produced both native TypeScript
diagnostics (called ts.Diagnostics) and its own internal Diagnostic format
(called an api.Diagnostic). This was done because TypeScript ts.Diagnostics
cannot be produced for files not in the ts.Program, and template type-
checking diagnostics are naturally produced for external .html template
files.

This design isn't optimal for several reasons:

1) Downstream tooling (such as the CLI) must support multiple formats of
diagnostics, adding to the maintenance burden.

2) ts.Diagnostics have gotten a lot better in recent releases, with support
for suggested changes, highlighting of the code in question, etc. None of
these changes have been of any benefit for api.Diagnostics, which have
continued to be reported in a very primitive fashion.

3) A future plugin model will not support anything but ts.Diagnostics, so
generating api.Diagnostics is a blocker for ngtsc-as-a-plugin.

4) The split complicates both the typings and the testing of ngtsc.

To fix this issue, this commit changes template type-checking to produce
ts.Diagnostics instead. Instead of reporting a special kind of diagnostic
for external template files, errors in a template are always reported in
a ts.Diagnostic that highlights the portion of the template which contains
the error. When this template text is distinct from the source .ts file
(for example, when the template is parsed from an external resource file),
additional contextual information links the error back to the originating
component.

A template error can thus be reported in 3 separate ways, depending on how
the template was configured:

1) For inline template strings which can be directly mapped to offsets in
the TS code, ts.Diagnostics point to real ranges in the source.

This is the case if an inline template is used with a string literal or a
"no-substitution" string. For example:

```typescript
@Component({..., template: `
<p>Bar: {{baz}}</p>
`})
export class TestCmp {
  bar: string;
}
```

The above template contains an error (no 'baz' property of `TestCmp`). The
error produced by TS will look like:

```
<p>Bar: {{baz}}</p>
          ~~~

test.ts:2:11 - error TS2339: Property 'baz' does not exist on type 'TestCmp'. Did you mean 'bar'?
```

2) For template strings which cannot be directly mapped to offsets in the
TS code, a logical offset into the template string will be included in
the error message. For example:

```typescript
const SOME_TEMPLATE = '<p>Bar: {{baz}}</p>';

@Component({..., template: SOME_TEMPLATE})
export class TestCmp {
  bar: string;
}
```

Because the template is a reference to another variable and is not an
inline string constant, the compiler will not be able to use "absolute"
positions when parsing the template. As a result, errors will report logical
offsets into the template string:

```
<p>Bar: {{baz}}</p>
          ~~~

test.ts (TestCmp template):2:15 - error TS2339: Property 'baz' does not exist on type 'TestCmp'.

  test.ts:3:28
    @Component({..., template: TEMPLATE})
                               ~~~~~~~~

    Error occurs in the template of component TestCmp.
```

This error message uses logical offsets into the template string, and also
gives a reference to the `TEMPLATE` expression from which the template was
parsed. This helps in locating the component which contains the error.

3) For external templates (templateUrl), the error message is delivered
within the HTML template file (testcmp.html) instead, and additional
information contextualizes the error on the templateUrl expression from
which the template file was determined:

```
<p>Bar: {{baz}}</p>
          ~~~

testcmp.html:2:15 - error TS2339: Property 'baz' does not exist on type 'TestCmp'.

  test.ts:10:31
    @Component({..., templateUrl: './testcmp.html'})
                                  ~~~~~~~~~~~~~~~~

    Error occurs in the template of component TestCmp.
```

PR Close #31952
2019-08-21 10:51:59 -07:00
Alex Rickabaugh bfc26bcd8c fix(ivy): run template type-checking for all components (#31952)
PR Close #31952
2019-08-21 10:51:59 -07:00
JoostK 0db1b5d8f1 fix(ivy): handle empty bindings in template type checker (#31594)
When a template contains a binding without a value, the template parser
creates an `EmptyExpr` node. This would previously be translated into
an `undefined` value, which would cause a crash downstream as `undefined`
is not included in the allowed type, so it was not handled properly.

This commit prevents the crash by returning an actual expression for empty
bindings.

Fixes #30076
Fixes #30929

PR Close #31594
2019-08-21 10:14:44 -07:00
Alan 424ab48672 fix(compiler): return enableIvy true when using `readConfiguration` (#32234)
PR Close #32234
2019-08-21 10:06:25 -07:00
Alex Rickabaugh ec4381dd40 feat: make the Ivy compiler the default for ngc (#32219)
This commit switches the default value of the enableIvy flag to true.
Applications that run ngc will now by default receive an Ivy build!

This does not affect the way Bazel builds in the Angular repo work, since
those are still switched based on the value of the --define=compile flag.
Additionally, projects using @angular/bazel still use View Engine builds
by default.

Since most of the Angular repo tests are still written against View Engine
(particularly because we still publish VE packages to NPM), this switch
also requires lots of `enableIvy: false` flags in tsconfigs throughout the
repo.

Congrats to the team for reaching this milestone!

PR Close #32219
2019-08-20 16:41:08 -07:00
Alex Rickabaugh 2b64031ddc refactor(ivy): remove the tsc passthrough option (#32219)
This option makes ngc behave as tsc, and was originally implemented before
ngtsc existed. It was designed so we could build JIT-only versions of
Angular packages to begin testing Ivy early, and is not used at all in our
current setup.

PR Close #32219
2019-08-20 16:41:08 -07:00
atscott cfed0c0cf1 fix(ivy): Support selector-less directive as base classes (#32125)
Following #31379, this adds support for directives without a selector to
Ivy.

PR Close #32125
2019-08-20 09:56:54 -07:00
Alex Rickabaugh 02bab8cf90 fix(ivy): in ngcc, handle inline exports in commonjs code (#32129)
One of the compiler's tasks is to enumerate the exports of a given ES
module. This can happen for example to resolve `foo.bar` where `foo` is a
namespace import:

```typescript
import * as foo from './foo';

@NgModule({
  directives: [foo.DIRECTIVES],
})
```

In this case, the compiler must enumerate the exports of `foo.ts` in order
to evaluate the expression `foo.DIRECTIVES`.

When this operation occurs under ngcc, it must deal with the different
module formats and types of exports that occur. In commonjs code, a problem
arises when certain exports are downleveled.

```typescript
export const DIRECTIVES = [
  FooDir,
  BarDir,
];
```

can be downleveled to:

```javascript
exports.DIRECTIVES = [
  FooDir,
  BarDir,
```

Previously, ngtsc and ngcc expected that any export would have an associated
`ts.Declaration` node. `export class`, `export function`, etc. all retain
`ts.Declaration`s even when downleveled. But the `export const` construct
above does not. Therefore, ngcc would not detect `DIRECTIVES` as an export
of `foo.ts`, and the evaluation of `foo.DIRECTIVES` would therefore fail.

To solve this problem, the core concept of an exported `Declaration`
according to the `ReflectionHost` API is split into a `ConcreteDeclaration`
which has a `ts.Declaration`, and an `InlineDeclaration` which instead has
a `ts.Expression`. Differentiating between these allows ngcc to return an
`InlineDeclaration` for `DIRECTIVES` and correctly keep track of this
export.

PR Close #32129
2019-08-15 14:45:59 -07:00
Pete Bacon Darwin eb5412d76f fix(ivy): reuse compilation scope for incremental template changes. (#31932)
Previously if only a component template changed then we would know to
rebuild its component source file. But the compilation was incorrect if the
component was part of an NgModule, since we were not capturing the
compilation scope information that had a been acquired from the NgModule
and was not being regenerated since we were not needing to recompile
the NgModule.

Now we register compilation scope information for each component, via the
`ComponentScopeRegistry` interface, so that it is available for incremental
compilation.

The `ComponentDecoratorHandler` now reads the compilation scope from a
`ComponentScopeReader` interface which is implemented as a compound
reader composed of the original `LocalModuleScopeRegistry` and the
`IncrementalState`.

Fixes #31654

PR Close #31932
2019-08-09 10:50:40 -07:00
Alex Rickabaugh 82b97280f3 fix(ivy): speed up ngtsc if project has no templates to check (#31922)
If a project being built with ngtsc has no templates to check, then ngtsc
previously generated an empty typecheck file. This seems to trigger some
pathological behavior in TS where the entire user program is re-checked,
which is extremely expensive. This likely has to do with the fact that the
empty file is not considered an ES module, meaning the module structure of
the program has changed.

This commit causes an export to be produced in the typecheck file regardless
of its other contents, which guarantees that it will be an ES module. The
pathological behavior is avoided and template type-checking is fast once
again.

PR Close #31922
2019-07-31 16:20:38 -07:00
Ayaz Hafiz 4db959260b docs(ivy): Add README to indexer module (#31260)
Describe the indexer module for Angular compiler developers. Include
scope of analysis provided by the module and the indexers it targets as
first-party.

PR Close #31260
2019-07-31 11:37:11 -07:00
JoostK 397d0ba9a3 test(ivy): fix broken testcase in Windows (#31860)
In #30181, several testcases were added that were failing in Windows.
The reason was that a recent rebase missed a required change to interact
with the compiler's virtualized filesystems. This commit introduces the
required usage of the VFS layer to fix the testcase.

PR Close #31860
2019-07-26 12:22:12 -07:00
Ayaz Hafiz 859ebdd836 fix(ivy): correctly bind `targetToIdentifier` to the TemplateVisitor (#31861)
`TemplateVisitor#visitBoundAttribute` currently has to invoke visiting
expressions manually (this is fixed in #31813). Previously, it did not
bind `targetToIdentifier` to the visitor before deferring to the
expression visitor, which breaks the `targetToIdentifier` code. This
fixes that and adds a test to ensure the closure processed correctly.

This change is urgent; without it, many indexing targets in g3 are
broken.

PR Close #31861
2019-07-26 12:03:16 -07:00
Igor Minar 6ece7db37a build: TypeScript 3.5 upgrade (#31615)
https://github.com/Microsoft/TypeScript/wiki/Breaking-Changes#typescript-35

PR Close #31615
2019-07-25 17:05:23 -07:00
JoostK 3a2b195a58 feat(ivy): translate type-check diagnostics to their original source (#30181)
PR Close #30181
2019-07-25 16:36:32 -07:00
JoostK 489cef6ea2 feat(ivy): include value spans for attributes, variables and references (#30181)
Template AST nodes for (bound) attributes, variables and references will
now retain a reference to the source span of their value, which allows
for more accurate type check diagnostics.

PR Close #30181
2019-07-25 16:36:32 -07:00
JoostK 985513351b feat(ivy): let ngtsc annotate type check blocks with source positions (#30181)
The type check blocks (TCB) that ngtsc generates for achieving type
checking of Angular templates needs to be annotated with positional
information in order to translate TypeScript's diagnostics for the TCB
code back to the location in the user's template. This commit augments
the TCB by attaching trailing comments with AST nodes, such that a node
can be traced back to its source location.

PR Close #30181
2019-07-25 16:36:32 -07:00
JoostK 8f3dd85600 refactor(ivy): move ngtsc's TCB generation test util to separate file (#30181)
PR Close #30181
2019-07-25 16:36:32 -07:00
Ayaz Hafiz 6b67cd5620 feat(ivy): index template references, variables, bound attributes/events (#31535)
Adds support for indexing template referenecs, variables, and property
and method calls inside bound attributes and bound events. This is
mostly an extension of the existing indexing infrastructure.

PR Close #31535
2019-07-25 13:09:10 -07:00
Ayaz Hafiz 44039a4b16 feat(ivy): pass information about used directive selectors on elements (#31782)
Extend indexing API interface to provide information about used
directives' selectors on template elements. This enables an indexer to
xref element attributes to the directives that match them.

The current way this matching is done is by mapping selectors to indexed
directives. However, this fails in cases where the directive is not
indexed by the indexer API, like for transitive dependencies. This
solution is much more general.

PR Close #31782
2019-07-23 21:13:49 -07:00
Pete Bacon Darwin 59c3700c8c feat(ivy): ngcc - implement `UndecoratedParentMigration` (#31544)
Implementing the "undecorated parent" migration described in
https://hackmd.io/sfb3Ju2MTmKHSUiX_dLWGg#Design

PR Close #31544
2019-07-23 21:11:40 -07:00
Pete Bacon Darwin 4d93d2406f feat(ivy): ngcc - support ngcc "migrations" (#31544)
This commit implements support for the ngcc migrations
as designed in https://hackmd.io/KhyrFV1VQHmeQsgfJq6AyQ

PR Close #31544
2019-07-23 21:11:40 -07:00
Pete Bacon Darwin c038992fae refactor(ivy): use ReflectionHost to find base classes (#31544)
When analyzing components, directives, etc we capture its base class.
Previously this assumed that the code is in TS format, which is not
always the case (e.g. ngcc).
Now this code is replaced with a call to
`ReflectionHost.getBaseClassExpression()`, which abstracts the work
of finding the base class.

PR Close #31544
2019-07-23 21:11:39 -07:00
Pete Bacon Darwin 8a470b9af9 feat(ivy): add `getBaseClassIdentifier()` to `ReflectionHost` (#31544)
This method will be useful for writing ngcc `Migrations` that
need to be able to find base classes.

PR Close #31544
2019-07-23 21:11:39 -07:00
Pete Bacon Darwin 399935c32b refactor(ivy): ngtsc - remove unnecessary type on helpers (#31544)
The `ClassDeclaration` already contains the `{name: ts.Identifier}`
type so there is no need to include it explicitly here.

PR Close #31544
2019-07-23 21:11:39 -07:00
Pete Bacon Darwin 97ab52c618 test(ivy): ensure that `runInEachFileSystem` cleans up after itself (#31544)
Previously the last file-system being tested was left as the current
file-system. Now it is reset to an `InvalidFileSystem` to ensure future
tests are not affected.

PR Close #31544
2019-07-23 21:11:39 -07:00
crisbeto 0aff4a6919 fix(ivy): incorrect ChangeDetectorRef injected into pipes used in component inputs (#31438)
When injecting a `ChangeDetectorRef` into a pipe, the expected result is that the ref will be tied to the component in which the pipe is being used. This works for most cases, however when a pipe is used inside a property binding of a component (see test case as an example), the current `TNode` is pointing to component's host so we end up injecting the inner component's view. These changes fix the issue by only looking up the component view of the `TNode` if the `TNode` is a parent.

This PR resolves FW-1419.

PR Close #31438
2019-07-23 15:46:23 -07:00
Ayaz Hafiz f65db20c6d feat(ivy): record absolute position of template expressions (#31391)
Currently, template expressions and statements have their location
recorded relative to the HTML element they are in, with no handle to
absolute location in a source file except for a line/column location.
However, the line/column location is also not entirely accurate, as it
points an entire semantic expression, and not necessarily the start of
an expression recorded by the expression parser.

To support record of the source code expressions originate from, add a
new `sourceSpan` field to `ASTWithSource` that records the absolute byte
offset of an expression within a source code.

Implement part 2 of [refactoring template parsing for
stability](https://hackmd.io/@X3ECPVy-RCuVfba-pnvIpw/BkDUxaW84/%2FMA1oxh6jRXqSmZBcLfYdyw?type=book).

PR Close #31391
2019-07-22 09:48:35 -07:00
Pete Bacon Darwin 376ad9c3cd refactor(ivy): remove deep imports into the compiler (#31376)
The compiler-cli should only reference code that can
be imported from the main entry-point of compiler.

PR Close #31376
2019-07-18 14:23:32 -07:00
Matt Lewis 4aecf9253b fix(ivy): support older CLI versions that do not pass a list of changed files (#31322)
Versions of CLI prior to angular/angular-cli@0e339ee did not expose the host.getModifiedResourceFiles() method.

This meant that null was being passed through to the IncrementalState.reconcile() method
to indicate that there were either no changes or the host didn't support that method.

This commit fixes a bug where we were checking for undefined rather than null when
deciding whether any resource files had changed, causing a null reference error to be thrown.

This bug was not caught by the unit testing because the tests set up the changed files
via a slightly different process, not having access to the CompilerHost, and these test
were making the erroneous assumption that undefined indicated that there were no
changed files.

PR Close #31322
2019-07-18 14:22:07 -07:00
JoostK a5f9a86520 feat(ivy): support undefined and null in static interpreter (#31150)
Previously, the usage of `null` and `undefined` keywords in code that is
statically interpreted by ngtsc resulted in a `DynamicValue`, as they were
not recognized as special entities. This commit adds support to interpret
these keywords.

PR Close #31150
2019-07-18 10:30:51 -07:00
Pete Bacon Darwin dd664f694c fix(ivy): ngcc - render namespaced imported decorators correctly (#31426)
The support for decorators that were imported via a namespace,
e.g. `import * as core from `@angular/core` was implemented
piecemeal. This meant that it was easy to miss situations where
a decorator identifier needed to be handled as a namepsaced
import rather than a direct import.

One such issue was that UMD processing of decorators was not
correct: the namespace was being omitted from references to
decorators.

Now the types have been modified to make it clear that a
`Decorator.identifier` could hold a namespaced identifier,
and the corresponding code that uses these types has been
fixed.

Fixes #31394

PR Close #31426
2019-07-18 10:17:50 -07:00
Jon Wallsten 3166cffd28 fix(compiler-cli): Return original sourceFile instead of redirected sourceFile from getSourceFile (#26036)
Closes #22524

PR Close #26036
2019-07-15 17:33:40 -04:00
Ayaz Hafiz 604d9063c5 feat(ivy): index template elements for selectors, attributes, directives (#31240)
Add support for indexing elements in the indexing module.
Opening and self-closing HTML tags have their selector indexed, as well
as the attributes on the element and the directives applied to an
element.

PR Close #31240
2019-07-12 17:54:08 -04:00
Alex Rickabaugh 1cba5d42d1 fix(ivy): handle rooted resource paths correctly (#31511)
Previously, resource paths beginning with '/' (aka "rooted" paths, which
are not actually absolute filesystem paths, but are relative to the
TypeScript project root directory) were not handled correctly. The leading
'/' was stripped and the path was resolved as if it was relative, but with
no containing file for context. This led to resources in different rootDirs
not being found.

Instead, such rooted paths are now resolved without TypeScript's help, by
checking each root directory. A test is added to this effect.

PR Close #31511
2019-07-11 11:42:33 -04:00
Pete Bacon Darwin 7f2330a968 perf(ivy): ngcc - add a cache to the FileSystem (#30525)
When profiling ngcc it is notable that a large amount of time
is spent dealing with an exception that is thrown (and handled
internally by fs) when checking the existence of a file.

We check file existence a lot in both finding entry-points
and when TS is compiling code. This commit adds a simple
cached `FileSystem`, which wraps a real `FileSystem` delegate.
This will reduce the number of calls through to `fs.exists()` and
`fs.readFile()` on the delegate.

Initial benchmarks indicate that the cache is miss to hit ratio
for `exists()` is about 2:1, which means that we save about 1/3
of the calls to `fs.existsSync()`.

Note that this implements a "non-expiring" cache, so it is not suitable
for a long lived `FileSystem`, where files may be modified externally.
The cache will be updated if a file is changed or moved via
calls to `FileSystem` methods but it will not be aware of changes
to the files system from outside the `FileSystem` service.

For ngcc we must create a new `FileSystem` service
for each run of `mainNgcc` and ensure that all file operations
(including TS compilation) use the `FileSystem` service.
This ensures that it is very unlikely that a file will change
externally during `mainNgcc` processing.

PR Close #30525
2019-07-09 09:40:46 -07:00