The problem was caused by missing `allocateBindingSlots` that led to incorrect # of vars defined for components and as a result, causing errors at runtime. Now all `bind` operation are accounted for and the number of `vars` is correct.
PR Close#27338
The problem was caused by the self-closing i18n instruction that was generated in case we have styling instructions defined for a component. As a result, that caused problems at runtime. This update adds extra check to avoid creating self-closing i18n instructions (create i18nStart and i18nEnd instructions instead) when styling instructions are present.
PR Close#27330
Previously the concept of multiple directives with the same selector was
not supported by ngtsc. This is due to the treatment of directives for a
component as a Map from selector to the directive, which is an erroneous
representation.
Now the directives for a component are stored as an array which supports
multiple directives with the same selector.
Testing strategy: a new ngtsc_spec test asserts that multiple directives
with the same selector are matched on an element.
PR Close#27298
These tests are not relevant to Ivy:
//packages/compiler-cli/test/diagnostics:check_types
//packages/compiler-cli/test/diagnostics:expression_diagnostics
//packages/compiler-cli/test/transformers:test
//packages/compiler-cli/test:extract_i18n
The //packages/compiler-cli/test:ngtools_api test has 2 specs, one of
which passes and the other of which depends on ngtsc supporting lazy
routes. It's now disabled with fixmeIvy().
PR Close#27301
In a more specific scenario: Considering people use a custom TypeScript compiler host with `NGC`, they _could_ expect only posix paths in methods like `writeFile`. This at first glance sounds like a trivial issue that should be just fixed by the actual compiler host, but usually TypeScript internal API's just pass around posix normalized paths, and therefore it would be good to follow the same standards when passing JSON genfiles to the `CompilerHost`.
For normal TypeScript files (and TS genfiles), this is already consistent because those will be handled by the actual TypeScript `Program` (see `emitCallback`).
PR Close#27062
This commit causes a call to setClassMetadata() to be emitted for every
type being compiled by ngtsc (every Angular type). With this metadata,
the TestBed should be able to recompile these classes when overriding
decorator information.
Testing strategy: Tests in the previous commit for
generateSetClassMetadataCall() verify that the metadata as generated is
correct. This commit enables the generation for each DecoratorHandler,
and a test is added to ngtsc_spec to verify all decorated types have
metadata generated for them.
PR Close#26860
* No longer depends on a custom CircleCI docker image that comes with Bazel pre-installed. Since Bazel is now available through NPM, we should be able to use the version from `@bazel/bazel` in order to enforce a consistent environment on CI and locally.
* This also reduces the amount of packages that need to be published (ngcontainer is removed)
PR Close#26691
We are close enough to blacklist a few test targets, rather than whitelist targets to run...
Because bazel rules can be composed of other rules that don't inherit tags automatically,
I had to explicitly mark all of our ts_library and ng_module targes with "ivy-local" and
"ivy-jit" tags so that we can create a query that excludes all fixme- tagged targets even
if those targets are composed of other targets that don't inherit this tag.
This is the updated overview of ivy related bazel tags:
- ivy-only: target that builds or runs only under ivy
- fixme-ivy-jit: target that doesn't yet build or run under ivy with --compile=jit
- fixme-ivy-local: target that doesn't yet build or run under ivy with --compile=local
- no-ivy-jit: target that is not intended to build or run under ivy with --compile=jit
- no-ivy-local: target that is not intended to build or run under ivy with --compile=local
PR Close#26471
This commit adds generation of .ngsummary.js shims alongside .ngfactory.js
shims when generated files are enabled.
Generated .ngsummary shims contain a single, null export for every exported
class with decorators that exists in the original source files. Ivy code
does not depend on summaries, so these exist only as a placeholder to allow
them to be imported and their values passed to old APIs. This preserves
backwards compatibility.
Testing strategy: this commit adds a compiler test to verify the correct
shape and contents of the generated .ngsummary.js files.
PR Close#26495
The 'animations' field of @Component metadata should be copied directly
into the ngComponentDef for that component and should not pass through
static resolution.
Previously the animations array was statically resolved and then the
values were translated back when generating ngComponentDef.
PR Close#26322
This commit builds on the NgtscTestEnvironment helper work before and
introduces template_typecheck_spec.ts, which contains compiler tests
for template type-checking.
PR Close#26203
This commit gets ready for the introduction of ngtsc template
type-checking tests by refactoring test environment setup into a
custom helper. This helper will simplify the authoring of future
ngtsc tests.
Ngtsc tests previously returned a numeric error code (a la ngtsc's CLI
interface) if any TypeScript errors occurred. The helper has the
ability to run ngtsc and return the actual array of ts.Diagnostics, which
greatly increases the ability to write clean tests.
PR Close#26203
Previously in Ivy, metadata for directives/components/modules/etc was
carried in .d.ts files inside type information encoded on the
DirectiveDef, ComponentDef, NgModuleDef, etc types of Ivy definition
fields. This works well, but has the side effect of complicating Ivy's
runtime code as these extra generic type parameters had to be specified
as <any> throughout the codebase. *DefInternal types were introduced
previously to mitigate this issue, but that's the wrong way to solve
the problem.
This commit returns *Def types to their original form, with no metadata
attached. Instead, new *DefWithMeta types are introduced that alias the
plain definition types and add extra generic parameters. This way the
only code that needs to deal with the extra metadata parameters is the
compiler code that reads and writes them - the existence of this metadata
is transparent to the runtime, as it should be.
PR Close#26203
`TypeScript` only supports merging and extending of `compilerOptions`. This is an implementation to support extending and inheriting of `angularCompilerOptions` from multiple files.
Closes: #22684
PR Close#22717
The bootstrap property of @NgModule was not previously compiled by
the compiler in AOT or JIT modes (in Ivy). This commit adds support
for bootstrap.
PR Close#25775
Closure requires @nocollapse on Ivy definition static fields in order
to not convert them to standalone constants. However tsickle, the tool
which would ordinarily be responsible for adding @nocollapse, doesn't
properly annotate fields which are added synthetically via transforms.
So this commit adds @nocollapse by applying regular expressions against
code during the final write to disk.
PR Close#25775
In tsc 3.0 the check that enables program structure reuse in tryReuseStructureFromOldProgram has changed
and now uses identity comparison on arrays within CompilerOptions. Since we recreate the options
on each incremental compilation, we now fail this check.
After this change the default set of options is reused in between incremental compilations, but we still
allow options to be overriden if needed.
PR Close#25275
This fixes a bug in ngtsc where each @Directive was compiled using a
separate ConstantPool. This resulted in two issues:
* Directive constants were not shared across the file
* Extra statements from directive compilation were dropped instead of
added to the file
This commit fixes both issues and adds a test to verify @Directive is
working properly.
PR Close#25620
Since non-flat module formats (esm2015, esm5) have different structure
than their flat counterparts (and since we are operating on JS files
inside `node_modules/`, we need to configure TS to include deeply nested
JS files (by specifying a sufficiently high `maxNodeModuleJsDepth`).
Remains to be determined if this has any (noticeable) performance
implications.
PR Close#25406
When generating the 'directives:' property of ngComponentDef, ngtsc
needs to be conscious of declaration order. If a directive being
written into the array is declarated after the component currently
being compiled, then the entire directives array needs to be wrapped
in a closure.
This commit fixes ngtsc to pay attention to such ordering issues
within directives arrays.
PR Close#25392
This commit creates an API for factory functions which allows them
to be inherited from one another. To do so, it differentiates between
the factory function as a wrapper for a constructor and the factory
function in ngInjectableDefs which is determined by a default
provider.
The new form is:
factory: (t?) => new (t || SomeType)(inject(Dep1), inject(Dep2))
The 't' parameter allows for constructor inheritance. A subclass with
no declared constructor inherits its constructor from the superclass.
With the 't' parameter, a subclass can call the superclass' factory
function and use it to create an instance of the subclass.
For @Injectables with configured providers, the factory function is
of the form:
factory: (t?) => t ? constructorInject(t) : provider();
where constructorInject(t) creates an instance of 't' using the
naturally declared constructor of the type, and where provider()
creates an instance of the base type using the special declared
provider on @Injectable.
PR Close#25392
Inside of a nested template, an attempt to generate code for a banana-
in-a-box expression would cause a crash in the _AstToIrVisitor, as it
was not handling the case where a write would be generated to a local
variable.
This change supports such a mode of operation.
PR Close#25321
before:
```
Expected to find features 'import * as i0 from "@angular/core";
import { Directive, Input } from '@angular/core';
```
after:
```
Failed to find "template" after "...Component_Factory() { return new
MyComponent(); }," in:
'import * as i0 from "@angular/core";
import { Directive, Input } from '@angular/core';```
```
PR Close#25291
To match the View Engine behavior.
We should make this configurable so that the node injector is tree shaken when
directives do not need to be published.
PR Close#25291
Previously the compiler compliance tests ran and built test code with
real dependencies on @angular/core and @angular/common. This meant that
any changes to the compiler would result in long rebuild processes
for tests to rerun.
This change removes those dependencies and causes test code to be built
against the fake_core stub of @angular/core that the ngtsc tests use.
This change also removes the dependency on @angular/common entirely, as
locality means it's possible to reference *ngIf without needing to link
to an implementation.
PR Close#25248
Existing bootstrap code in the wild depends on the existence of
.ngfactory files, which Ivy does not need. This commit adds the
capability in ngtsc to generate .ngfactory files which bridge
existing bootstrap code with Ivy.
This is an initial step. Remaining work includes complying with
the compiler option to specify a generated file directory, as well
as presumably testing in g3.
PR Close#25176
Before this change bound properties would not be used when matching directives
at runtime.
That is `<ng-template [ngIf]=cond>...</ng-template>` would not trigger the
`ngIf` directive.
PR Close#25272
Update XMB placeholders(<ph>) to include the original value on top of an
example. Placeholders can by definition have one example(<ex>) tag and a
text node. The text node is used by TC as the "original" value from the
placeholder, while the example should represent a dummy value.
For example: <ph name="PET"><ex>Gopher</ex>{{ petName }}</ph>.
This change makes sure that we have the original text, but it *DOES NOT*
make sure that the example is correct. The example has the same wrong
behavior of showing the interpolation text rather than a useful
example.
No breaking changes, but tools that depend on the previous behavior and
don't consider the full XMB definition may fail to parse the XMB.
Fixes b/72565847
PR Close#25079
There is a bug in the existing handling for cross-file references.
Suppose there are two files, module.ts and component.ts.
component.ts declares two components, one of which uses the other.
In the Ivy model, this means the component will get a directives:
reference to the other in its defineComponent call.
That reference is generated by looking at the declared components
of the module (in module.ts). However, the way ngtsc tracks this
reference, it ends up comparing the identifier of the component
in module.ts with the component.ts file, detecting they're not in
the same file, and generating a relative import.
This commit changes ngtsc to track all identifiers of a reference,
including the one by which it is declared. This allows toExpression()
to correctly decide that a local reference is okay in component.ts.
PR Close#25080
When ngtsc encounters a reference to a type (for example, a Component
type listed in an NgModule declarations array), it traces the import
of that type and attempts to determine the best way to refer to it.
In the event the type is defined in the same file where a reference
is being generated, the identifier of the type is used. If the type
was imported, ngtsc has a choice. It can use the identifier from the
original import, or it can write a new import to the module where the
type came from.
ngtsc has a bug currently when it elects to rely on the user's import.
When writing a .d.ts file, the user's import may have been elided as
the type was not referred to from the type side of the program. Thus,
in .d.ts files ngtsc must always assume the import may not exist, and
generate a new one.
In .js output the import is guaranteed to still exist, so it's
preferable for ngtsc to continue using the existing import if one is
available.
This commit changes how @angular/compiler writes type definitions, and
allows it to use a different expression to write a type definition than
is used to write the value. This allows ngtsc to specify that types in
type definitions should always be imported. A corresponding change to
the staticallyResolve() Reference system allows the choice of which
type of import to use when generating an Expression from a Reference.
PR Close#25080
@ContentChild[ren] and @ViewChild[ren] can contain a forwardRef() to a
type. This commit allows ngtsc to unwrap the forward reference and
deal with the node inside.
It includes two modes of support for forward reference resolution -
a foreign function resolver which understands deeply nested forward
references in expressions that are being statically evaluated, and
an unwrapForwardRef() function which deals only with top-level nodes.
Both will be useful in the future, but for now only unwrapForwardRef()
is used.
PR Close#25080
Previously ngtsc would use a tuple of class types for listing metadata
in .d.ts files. For example, an @NgModule's declarations might be
represented with the type:
[NgIf, NgForOf, NgClass]
If the module had no declarations, an empty tuple [] would be produced.
This has two problems.
1. If the class type has generic type parameters, TypeScript will
complain that they're not provided.
2. The empty tuple type is not actually legal.
This commit addresses both problems.
1. Class types are now represented using the `typeof` operator, so the
above declarations would be represented as:
[typeof NgIf, typeof NgForOf, typeof NgClass].
Since typeof operates on a value, it doesn't require generic type
arguments.
2. Instead of an empty tuple, `never` is used to indicate no metadata.
PR Close#24862
Previously, some of the *Def symbols were not exported or were exported
as public API. This commit ensures every definition type is in the
private export namespace.
PR Close#24862
This commit moves the compiler compliance tests into compiler-cli,
and uses ngtsc to run them instead of the custom compilation
pipeline used before. Testing against ngtsc allows for validation
of the real compiler output.
This commit also fixes a few small issues that prevented the tests
from passing.
PR Close#24862
This change adds support for host bindings to ngtsc, and parses them
both from decorators and from the metadata in the top-level annotation.
PR Close#24862
@NgModule()s get compiled to two fields: ngModuleDef and ngInjectorDef.
Both fields contain imports, as both selector scopes and injectors have
the concept of composed units of configuration. Previously these fields
were generated by static resolution of imports and exports in metadata.
Support for ModuleWithProviders requires they be generated differently.
ngModuleDef's imports/exports are generated as resolved lists of types,
whereas ngInjectorDef's imports should reflect the raw expressions that
the developer wrote in the metadata.
This change modifies the NgModule handler and properly copies raw nodes
for the imports and exports into the ngInjectorDef.
PR Close#24862
Previously ngtsc had a few bugs handling special token types:
* Injector was not properly translated to INJECTOR
* ChangeDetectorRef was not injected via injectChangeDetectorRef()
This commit fixes these two bugs, and also adds a test to ensure
they continue to work correctly.
PR Close#24862
Within an @NgModule it's common to include in the imports a call to
a ModuleWithProviders function, for example RouterModule.forRoot().
The old ngc compiler was able to handle this pattern because it had
global knowledge of metadata of not only the input compilation unit
but also all dependencies.
The ngtsc compiler for Ivy doesn't have this knowledge, so the
pattern of ModuleWithProviders functions is more difficult. ngtsc
must be able to determine which module is imported via the function
in order to expand the selector scope and properly tree-shake
directives and pipes.
This commit implements a solution to this problem, by adding a type
parameter to ModuleWithProviders through which the actual module
type can be passed between compilation units.
The provider side isn't a problem because the imports are always
copied directly to the ngInjectorDef.
PR Close#24862
for non-inline templates
- Non-inline templates used to ouput the path to the component TS file
instead of the path to the original HTML file.
- Inline templates keep the same behavior.
Fixes#24884
PR Close#24885
On accident a few of the definition types were emitted as public API
symbols. Much of the Ivy API surface is still prefixed with ɵ,
indicating it's a private API. The definition types should be private
for now.
PR Close#24738
The current module resolution simply attaches .ts to the import/export path, which does
not work if the path is using Node / CommonJS behavior to resolve to an index.ts file.
This patch uses typescript's module resolution logic, and will attempt to load the original
typescript file if this resolution returns a .js or .d.ts file
PR Close#22856
With these changes, the types are a little stricter now and also not
compatible with Protractor's jasmine-like syntax. So, we have to also
use `@types/jasminewd2` for e2e tests (but not for non-e2e tests).
I also had to "augment" `@types/jasminewd2`, because the latest
typings from [DefinitelyTyped][1] do not reflect the fact that the
`jasminewd2` version (v2.1.0) currently used by Protractor supports
passing a `done` callback to a spec.
[1]: 566e039485/types/jasminewd2/index.d.ts (L9-L15)Fixes#23952Closes#24733
PR Close#19904
This commit adds support for templateUrl in component templates within
ngtsc. The compilation pipeline is split into sync and async versions,
where asynchronous compilation invokes a special preanalyze() phase of
analysis. The preanalyze() phase can optionally return a Promise which
will delay compilation until it resolves.
A ResourceLoader interface is used to resolve templateUrls to template
strings and can return results either synchronously or asynchronously.
During sync compilation it is an error if the ResourceLoader returns a
Promise.
Two ResourceLoader implementations are provided. One uses 'fs' to read
resources directly from disk and is chosen if the CompilerHost doesn't
provide a readResource method. The other wraps the readResource method
from CompilerHost if it's provided.
PR Close#24704
This change generates ngInjectorDef as well as ngModuleDef for @NgModule
annotated types, reflecting the dual nature of @NgModules as both compilation
scopes and as DI configuration containers.
This required implementing ngInjectorDef compilation in @angular/compiler as
well as allowing for multiple generated definitions for a single decorator in
the core of ngtsc.
PR Close#24632
All errors for existing fields have been detected and suppressed with a
`!` assertion.
Issue/24571 is tracking proper clean up of those instances.
One-line change required in ivy/compilation.ts, because it appears that
the new syntax causes tsickle emitted node to no longer track their
original sourceFiles.
PR Close#24572
This change supports compilation of components, directives, and modules
within ngtsc. Support is not complete, but is enough to compile and test
//packages/core/test/bundling/todo in full AOT mode. Code size benefits
are not yet achieved as //packages/core itself does not get compiled, and
some decorators (e.g. @Input) are not stripped, leading to unwanted code
being retained by the tree-shaker. This will be improved in future commits.
PR Close#24427
Previously, the compileComponent() and compileDirective() APIs still required
the output of global analysis, even though they only read local information
from that output.
With this refactor, compileComponent() and compileDirective() now define
their inputs explicitly, with the new interfaces R3ComponentMetadata and
R3DirectiveMetadata. compileComponentGlobal() and compileDirectiveGlobal()
are introduced and convert from global analysis output into the new metadata
format.
This refactor also splits out the view compiler into separate files as
r3_view_compiler_local.ts was getting unwieldy.
Finally, this refactor also splits out generation of DI factory functions
into a separate r3_factory utility as the logic is utilized between different
compilers.
PR Close#23545
This commit adds a new compiler pipeline that isn't dependent on global
analysis, referred to as 'ngtsc'. This new compiler is accessed by
running ngc with "enableIvy" set to "ngtsc". It reuses the same initialization
logic but creates a new implementation of Program which does not perform the
global-level analysis that AngularCompilerProgram does. It will be the
foundation for the production Ivy compiler.
PR Close#23455
Ivy definition looks something like this:
```
class MyService {
static ngInjectableDef = defineInjectable({
…
});
}
```
Here the argument to `defineInjectable` is well known public contract which needs
to be honored in backward compatible way between versions. The type of the
return value of `defineInjectable` on the other hand is private and can change
shape drastically between versions without effecting backwards compatibility of
libraries publish to NPM. To our users it is effectively an `OpaqueToken`.
By prefixing the type with `ɵ` we are communicating the the outside world that
the value is not public API and is subject to change without backward compatibility.
PR Close#23371