Previously, `validate-commit-message` would treat `fixup! `-prefixed
commits like this:
- It would strip the `fixup! ` prefix.
- It would validate the rest of the commit message header as any other
commit.
However, fixup commits are special in that they need to exactly match an
earlier commit message header (sans the `fixup! ` prefix) in order for
git to treat them correctly. Otherwise, they will not be squashed into
the original commits and will be merged as is. Fixup commits can end up
not matching their original commit for several reasons (e.g. accidental
typo, changing the original commit message, etc.).
This commit prevents invalid fixup commits to pass validation by
ensuring that they match an earlier (unmerged) commit (i.e. a commit
between the current HEAD and the BASE commit).
NOTE: This new behavior is currently not activated in the pre-commit git
hook, that is used to validate commit messages (because the
preceding, unmerged commits are not available there). It _is_
activated in `gulp validate-commit-message`, which is run as part
of the `lint` job on CI and thus will detect invalid commits,
before their getting merged.
PR Close#32023
While `fixup! ` is fine, `squash! ` means that the commit message needs
tweaking, which cannot be done automatically during merging (i.e. it
should be done by the PR author).
Previously, `validate-commit-message` would always allow
`squash! `-prefixed commits, which would cause problems during merging.
This commit changes `validate-commit-message` to make it configurable
whether such commits are allowed and configures the
`gulp validate-commit-message` task, which is run as part of the `lint`
job on CI, to not allow them.
NOTE: This new check is disabled in the pre-commit git hook that is used
to validate commit messages, because these commits might still be
useful during development.
PR Close#32023
There has been a regression where enabling rollup treeshaking causes errors during runtime because it will drop const access which will always evaluate to true or false. However, such `const` in `@angular/core` cannot be dropped because their value is changed when NGCC is run on `@angular/core`
VE
```
const SWITCH_IVY_ENABLED__POST_R3__ = true;
const SWITCH_IVY_ENABLED__PRE_R3__ = false;
const ivyEnabled = SWITCH_IVY_ENABLED__PRE_R3__;
```
Ivy (After NGCC)
```
const SWITCH_IVY_ENABLED__POST_R3__ = true;
const SWITCH_IVY_ENABLED__PRE_R3__ = false;
const ivyEnabled = SWITCH_IVY_ENABLED__POST_R3__;
```
FESM2015
```
load(path) {
/** @type {?} */
const legacyOfflineMode = this._compiler instanceof Compiler;
return legacyOfflineMode ? this.loadFactory(path) : this.loadAndCompile(path);
}
```
ESM2015
```
load(path) {
/** @type {?} */
const legacyOfflineMode = !ivyEnabled && this._compiler instanceof Compiler;
return legacyOfflineMode ? this.loadFactory(path) : this.loadAndCompile(path);
}
```
From the above we can see that `ivyEnabled ` is being treeshaken away when generating the FESM bundle which is causing runtime errors such as `Cannot find module './lazy/lazy.module.ngfactory'` since in Ivy we will always load the factories.
PR Close#32069
Similar to interpolation, we do not want to completely remove whitespace
nodes that are siblings of an expansion.
For example, the following template
```html
<div>
<strong>items left<strong> {count, plural, =1 {item} other {items}}
</div>
```
was being collapsed to
```html
<div><strong>items left<strong>{count, plural, =1 {item} other {items}}</div>
```
which results in the text looking like
```
items left4
```
instead it should be collapsed to
```html
<div><strong>items left<strong> {count, plural, =1 {item} other {items}}</div>
```
which results in the text looking like
```
items left 4
```
---
**Analysis of the code and manual testing has shown that this does not cause
the generated ids to change, so there is no breaking change here.**
PR Close#31962
Previously if only a component template changed then we would know to
rebuild its component source file. But the compilation was incorrect if the
component was part of an NgModule, since we were not capturing the
compilation scope information that had a been acquired from the NgModule
and was not being regenerated since we were not needing to recompile
the NgModule.
Now we register compilation scope information for each component, via the
`ComponentScopeRegistry` interface, so that it is available for incremental
compilation.
The `ComponentDecoratorHandler` now reads the compilation scope from a
`ComponentScopeReader` interface which is implemented as a compound
reader composed of the original `LocalModuleScopeRegistry` and the
`IncrementalState`.
Fixes#31654
PR Close#31932
Moves the `renderer_to_renderer2` migration google3 tslint rule
into the new `google3` directory. This is done for consistency
as we recently moved all google3 migration rules into a new
`google3` folder (see: f69e4e6f77).
PR Close#31817
Creates a separate bazel target for the google3 migration
tests. The benefit is that it's faster to run tests for
public migrations in development. Google3 lint rules are
usually another story/implementation and the tests are quite
slow due to how TSLint applies replacements.
Additionally if something changes in the google3 tslint rules,
the tests which aren't affected re-run unnecessarily.
PR Close#31817
In Angular today, the following pattern works:
```typescript
export class BaseDir {
constructor(@Inject(ViewContainerRef) protected vcr: ViewContainerRef) {}
}
@Directive({
selector: '[child]',
})
export class ChildDir extends BaseDir {
// constructor inherited from BaseDir
}
```
A decorated child class can inherit a constructor from an undecorated base
class, so long as the base class has metadata of its own (for JIT mode).
This pattern works regardless of metadata in AOT.
In Angular Ivy, this pattern does not work: without the @Directive
annotation identifying the base class as a directive, information about its
constructor parameters will not be captured by the Ivy compiler. This is a
result of Ivy's locality principle, which is the basis behind a number of
compilation optimizations.
As a solution, @Directive() without a selector will be interpreted as a
"directive base class" annotation. Such a directive cannot be declared in an
NgModule, but can be inherited from. To implement this, a few changes are
made to the ngc compiler:
* the error for a selector-less directive is now generated when an NgModule
declaring it is processed, not when the directive itself is processed.
* selector-less directives are not tracked along with other directives in
the compiler, preventing other errors (like their absence in an NgModule)
from being generated from them.
PR Close#31379
PR #29473 changed the docs to use a string as the input value of `formControlName`, as it used to only accept a string.
This has been changed, and `formControlName` now accepts a string or a number, so the example in the docs can use a binding as they used to.
PR Close#30606
This commit relaxes the type of the `formControlName` input to accept both a `string` and a `number`.
Currently, when using a `FormArray`, most templates look like:
```
<div formArrayName="tags">
<div *ngFor="let tag of tagsArray.controls; index as i">
<input [formControlName]="i">
</div>
</div>
```
Here `formControlName` receives a number whereas its input type is a string.
This is fine for VE and `fullTemplateTypeCheck`, but not for Ivy which does a more thorough type checking on inputs with `fullTemplateTypeCheck` enabled and throws `Type 'number' is not assignable to type 'string'`. It is fixable by using `formControlName="{{i}}"` but you have to know the difference between `a="{{b}}"` and `[a]="b"` and change it all over the application codebase. This commit allows the existing code to still type-check.
PR Close#30606
Examples for testing are designed specifically to run in StackBlitz and
are not regular cli projects (e.g. their `main.ts` files may load and run
tests instead of bootstrapping an app). They are not intended to be
downloaded and built/run locally using the cli.
In order to avoid confusing users, this commit removes the download links
from the guide. If desired, the projects can still be exported locally
via StackBlitz's UI.
Related to #31020 and #31937.
PR Close#31949
Now that the Angular LS is a proper tsserver plugin, it does not make
sense for it to maintain its own language service API.
This is part one of the effort to remove our custom LanguageService
interface.
This interface is cumbersome because we have to do two transformations:
ng def -> ts def -> lsp definition
The TS LS interface is more comprehensive, so this allows the Angular LS
to return more information.
PR Close#31972
Publishing of NGCC packages should not be allowed. It is easy for a user to publish an NGCC'd version of a library they have workspace libraries which are being used in a workspace application.
If a users builds a library and afterwards the application, the library will be transformed with NGCC and since NGCC taints the distributed files that should be published.
With this change we use the npm/yarn `prepublishOnly` hook to display and error and abort the process with a non zero error code when a user tries to publish an NGCC version of the package.
More info: https://docs.npmjs.com/misc/scripts
PR Close#32031
Previously, when run with `createNewEntryPointFormats: true`, `ngcc`
would only update `package.json` with the new entry-point for the first
format property that mapped to a format-path. Subsequent properties
mapping to the same format-path would be detected as processed and not
have their new entry-point format recorded in `package.json`.
This commit fixes this by ensuring `package.json` is updated for all
matching format properties, when writing an `EntryPointBundle`.
PR Close#32052