When the compiler needs to convert a type reference to a value
expression, it may encounter a type that refers to a namespaced symbol.
Such namespaces need to be handled specially as there's various forms
available. Consider a namespace named "ns":
1. One can refer to a namespace by itself: `ns`. A namespace is only
allowed to be used in a type position if it has been merged with a
class, but even if this is the case it may not be possible to convert
that type into a value expression depending on the import form. More
on this later (case a below)
2. One can refer to a type within the namespace: `ns.Foo`. An import
needs to be generated to `ns`, from which the `Foo` property can then
be read.
3. One can refer to a type in a nested namespace within `ns`:
`ns.Foo.Bar` and possibly even deeper nested. The value
representation is similar to case 2, but includes additional property
accesses.
The exact strategy of how to deal with these cases depends on the type
of import used. There's two flavors available:
a. A namespaced import like `import * as ns from 'ns';` that creates
a local namespace that is irrelevant to the import that needs to be
generated (as said import would be used instead of the original
import).
If the local namespace "ns" itself is referred to in a type position,
it is invalid to convert it into a value expression. Some JavaScript
libraries publish a value as default export using `export = MyClass;`
syntax, however it is illegal to refer to that value using "ns".
Consequently, such usage in a type position *must* be accompanied by
an `@Inject` decorator to provide an explicit token.
b. An explicit namespace declaration within a module, that can be
imported using a named import like `import {ns} from 'ns';` where the
"ns" module declares a namespace using `declare namespace ns {}`.
In this case, it's the namespace itself that needs to be imported,
after which any qualified references into the namespace are converted
into property accesses.
Before this change, support for namespaces in the type-to-value
conversion was limited and only worked correctly for a single qualified
name using a namespace import (case 2a). All other cases were either
producing incorrect code or would crash the compiler (case 1a).
Crashing the compiler is not desirable as it does not indicate where
the issue is. Moreover, the result of a type-to-value conversion is
irrelevant when an explicit injection token is provided using `@Inject`,
so referring to a namespace in a type position (case 1) could still be
valid.
This commit introduces logic to the type-to-value conversion to be able
to properly deal with all type references to namespaced symbols.
Fixes#36006
Resolves FW-1995
PR Close#36106
In cc4b813e75 the `getBasePaths()`
function was changed to log a warning if a `basePath()` computed from
the `paths` mappings did not exist. It turns out this is a common and
accepted scenario, so we should not log warnings in this case.
Fixes#36518
PR Close#36525
1. update jasmine to 3.5
2. update @types/jasmine to 3.5
3. update @types/jasminewd2 to 2.0.8
Also fix several cases, the new jasmine 3 will help to create test cases correctly,
such as in the `jasmine 2.x` version, the following case will pass
```
expect(1 == 2);
```
But in jsamine 3, the case will need to be
```
expect(1 == 2).toBeTrue();
```
PR Close#34625
During static evaluation of expressions, the partial evaluator
may come across a binary + operator for which it needs to
evaluate its operands. Any of these operands may be a reference
to an enum member, in which case the enum member's value needs
to be used as literal value, not the enum member reference
itself. This commit fixes the behavior by resolving an
`EnumValue` when used as a literal value.
Fixes#35584
Resolves FW-1951
PR Close#36461
Previously, `isRelativePath()` assumed paths are *nix-style. This caused
Windows-style paths (such as `C:\foo\some-package\some-file.js`) to not
be recognized as "relative" imports.
This commit fixes this by using the OS-agnostic `isRooted()` helper and
also accounting for both styles of path delimiters: `/` and `\`
PR Close#36372
When TypeScript downlevels ES2015+ code to ES5, it uses some helper
functions to emulate some ES2015+ features, such as spread syntax. The
TypeScript compiler can be configured to emit these helpers into the
transpiled code (which is controlled by the `noEmitHelpers` option -
false by default). It can also be configured to import these helpers
from the `tslib` module (which is controlled by the `importHelpers`
option - false by default).
While most of the time the helpers will be either emitted or imported,
it is possible that one configures their app to neither emit nor import
them. In that case, the helpers could, for example, be made available on
the global object. This is what `@nativescript/angular`
v9.0.0-next-2019-11-12-155500-01 does. See, for example, [common.js][1].
Ngcc must be able to detect and statically evaluate these helpers.
Previously, it was only able to detect emitted or imported helpers.
This commit adds support for detecting these helpers if they are neither
emitted nor imported. It does this by checking identifiers for which no
declaration (either concrete or inline) can be found against a list of
known TypeScript helper function names.
[1]: https://unpkg.com/browse/@nativescript/angular@9.0.0-next-2019-11-12-155500-01/common.js
PR Close#36418
The source-map flattening was throwing an error when there
is a cyclic dependency between source files and source-maps.
The error was either a custom one describing the cycle, or a
"Maximum call stack size exceeded" one.
Now this is handled more leniently, resulting in a partially loaded
source file (or source-map) and a warning logged.
Fixes#35727Fixes#35757
Fixes https://github.com/angular/angular-cli/issues/17106
Fixes https://github.com/angular/angular-cli/issues/17115
PR Close#36452
Recently we added support for ignoring specified deep-import
warnings by providing sets of regular expressions within the
`ngcc.config.js` file. But this was only working for the project
level configuration.
This commit fixes ngcc so that it will also read these regular
expressions from package level configuration too.
Fixes#35750
PR Close#36423
The `browser` package.json property is now supported to the same
level as `main` - i.e. it is sniffed for UMD, ESM5 and CommonJS.
The `browser` property can also contain an object with file overrides
but this is not supported by ngcc.
Fixes#36062
PR Close#36396
Previously, `main` was only checked for `umd` or `commonjs`
formats. Now if there are `import` or `export` statements in the
source file it will be deemed to be in `esm5` format.
Fixes#35788
PR Close#36396
The `NgccReflectionHost`s have logic for detecting certain known
declarations (such as `Object.assign()` and TypeScript helpers), which
allows the `PartialEvaluator` to evaluate expressions it would not be
able to statically evaluate otherwise.
In #36089, `DelegatingReflectionHost` was introduced, which delegates to
a TypeScript `ReflectionHost` when reflecting on TypeScript files, which
for ngcc's case means `.d.ts` files of dependencies. As a result, ngcc
lost the ability to detect TypeScript helpers imported from `tslib`,
because `DelegatingReflectionHost` was not able to apply the known
declaration detection logic while reflecting on `tslib`'s `.d.ts` files.
This commit fixes this by ensuring `DelegatingReflectionHost` calls the
`NgccReflectionHost`'s `detectKnownDeclaration()` method as necessary,
even when using the TypeScript `ReflectionHost`.
NOTE:
The previous commit exposed a bug in ngcc that was hidden due to the
tests' being inconsistent with how the `ReflectionHost`s are used in the
actual program. The changes in this commit are verified by ensuring the
failing tests are now passing (hence no new tests are added).
PR Close#36284
In #36089, `DelegatingReflectionHost` was introduced. Under the hood, it
delegates another `NgccReflectionHost` in order to reflect over the
program's source files, while using a different TypeScript
`ReflectionHost` to reflect over `.d.ts` files (which is how external
dependencies are represented in the program).
Previously, the `NgccReflectionHost`s were used directly in tests. This
does not exercise them in the way they are exercised in the actual
program, because (when used directly) they will also reflect on `.d.ts`
files too (instead of delegating to the TypeScript `ReflectionHost`).
This could hide bugs that would happen on the actual program.
This commit fixes this by using the `DelegatingReflectionHost` in the
various `NgccReflectionHost` tests.
NOTE:
This change will cause some of the existing tests to start failing.
These failures demonstrate pre-existing bugs in ngcc, that were hidden
due to the tests' being inconsistent with how the `ReflectionHost`s are
used in the actual program. They will be fixed in the next commit.
PR Close#36284
The `NgccReflectionHost`s have logic for detecting certain known
declarations (such as `Object.assign()` and TypeScript helpers), which
allows the `PartialEvaluator` to evaluate expressions it would not be
able to statically evaluate otherwise.
This commit moves the logic for identifying these known declarations to
dedicated methods. This is in preparation of allowing ngcc's
`DelegatingReflectionHost` (introduced in #36089) to also apply the
known declaration detection logic when reflecting on TypeScript sources.
PR Close#36284
In Ivy, Angular decorators are compiled into static fields that are
inserted into a class declaration in a TypeScript transform. When
targeting Closure compiler such fields need to be annotated with
`@nocollapse` to prevent them from being lifted from a static field into
a variable, as that would prevent the Ivy runtime from being able to
find the compiled definitions.
Previously, there was a bug in TypeScript where synthetic comments added
in a transform would not be emitted at all, so as a workaround a global
regex-replace was done in the emit's `writeFile` callback that would add
the `@nocollapse` annotation to all static Ivy definition fields. This
approach is no longer possible when ngtsc is running as TypeScript
plugin, as a plugin cannot control emit behavior.
The workaround is no longer necessary, as synthetic comments are now
properly emitted, likely as of
https://github.com/microsoft/TypeScript/pull/22141 which has been
released with TypeScript 2.8.
This change is required for running ngtsc as TypeScript plugin in
Bazel's `ts_library` rule, to move away from the custom `ngc_wrapped`
approach.
Resolves FW-1952
PR Close#35932
Ngcc supports providing a project-level configuration to affect how
certain dependencies are processed and also has a built-in fallback
configuration for some unmaintained packages. Each entry in these
configurations could be scoped to specific versions of a package by
providing a version range. If no version range is provided for a
package, it defaults to `*` (with the intention of matching any
version).
Previously, the installed version of a package was tested against the
version range using the [semver][1] package's `satisfies()` function
with the default options. By default, `satisfies()` does not match
pre-releases (see [here][2] for more details on reasoning). While this
makes sense when determining what version of a dependency to install
(trying to avoid unexpected breaking changes), it is not desired in the
case of ngcc.
This commit fixes it by explicitly specifying that pre-release versions
should be matched normally.
[1]: https://www.npmjs.com/package/semver
[2]: https://github.com/npm/node-semver#prerelease-tags
PR Close#36370
Previously, a bad baseUrl or path mapping passed to an `EntryPointFinder`
could cause the original `sourceDirectory` to be superceded by a higher
directory. This could result in none of the sourceDirectory entry-points being
processed.
Now missing basePaths computed from path-mappings are discarded with
a warning. Further, if the `baseUrl` is the root directory then a warning is
given as this is most likely an error in the tsconfig.json.
Resolves#36313Resolves#36283
PR Close#36331
The previous optimizations in #35756 to the
`DirectoryWalkerEntryPointFinder` were over zealous
with regard to packages that have entry-points stored
in "container" directories in the package, where the
container directory was not an entry-point itself.
Now we will also walk such "container" folders as long
as they do not contain `.js` files, which we regard as an
indicator that the directory will not contain entry-points.
Fixes#36216
PR Close#36305
This commit simplifies the `DirectoryWalkerEntryPointFinder` inter-method
calling to make it easier to follow, and also to support controlling
walking of a directory based on its children.
PR Close#36305
Previously we only searched for package paths below the set of `basePaths`
that were computed from the `basePath` provided to ngcc and the set of
`pathMappings`.
In some scenarios, such as hoisted packages, the entry-point is not within
any of the `basePaths` identified above. For example:
```
project
packages
app
node_modules
app-lib (depends on lib1)
node_modules
lib1 (depends on lib2)
node_modules
lib2 (depends on lib3/entry-point)
lib3
entry-point
```
When CLI is compiling `app-lib` ngcc will be given
`project/packages/app/node_modules` as the `basePath.
If ngcc is asked to target `lib2`, the `targetPath` will be
`project/node_modules/lib1/node_modules/lib2`.
Since `lib2` depends upon `lib3/entry-point`, ngcc will need to compute
the package path for `project/node_modules/lib3/entry-point`.
Since `project/node_modules/lib3/entry-point` is not contained in the `basePath`
`project/packages/app/node_modules`, ngcc failed to compute the `packagePath`
correctly, instead assuming that it was the same as the entry-point path.
Now we also consider the nearest `node_modules` folder to the entry-point
path as an additional `basePath`. If one is found then we use the first
directory directly below that `node_modules` directory as the package path.
In the case of our example this extra `basePath` would be `project/node_modules`
which allows us to compute the `packagePath` of `project/node_modules/lib3`.
Fixes#35747
PR Close#36249
Previously ngcc never preserved whitespaces but this is at odds
with how the ViewEngine compiler works. In ViewEngine, library
templates are recompiled with the current application's tsconfig
settings, which meant that whitespace preservation could be set
in the application tsconfig file.
This commit allows ngcc to use the `preserveWhitespaces` setting
from tsconfig when compiling library templates. One should be aware
that this disallows different projects with different tsconfig settings
to share the same node_modules folder, with regard to whitespace
preservation. But this is already the case in the current ngcc since
this configuration is hard coded right now.
Fixes#35871
PR Close#36189
This commit augments the `FactoryDef` declaration of Angular decorated
classes to contain information about the parameter decorators used in
the constructor. If no constructor is present, or none of the parameters
have any Angular decorators, then this will be represented using the
`null` type. Otherwise, a tuple type is used where the entry at index `i`
corresponds with parameter `i`. Each tuple entry can be one of two types:
1. If the associated parameter does not have any Angular decorators,
the tuple entry will be the `null` type.
2. Otherwise, a type literal is used that may declare at least one of
the following properties:
- "attribute": if `@Attribute` is present. The injected attribute's
name is used as string literal type, or the `unknown` type if the
attribute name is not a string literal.
- "self": if `@Self` is present, always of type `true`.
- "skipSelf": if `@SkipSelf` is present, always of type `true`.
- "host": if `@Host` is present, always of type `true`.
- "optional": if `@Optional` is present, always of type `true`.
A property is only present if the corresponding decorator is used.
Note that the `@Inject` decorator is currently not included, as it's
non-trivial to properly convert the token's value expression to a
type that is valid in a declaration file.
Additionally, the `ComponentDefWithMeta` declaration that is created for
Angular components has been extended to include all selectors on
`ng-content` elements within the component's template.
This additional metadata is useful for tooling such as the Angular
Language Service, as it provides the ability to offer suggestions for
directives/components defined in libraries. At the moment, such
tooling extracts the necessary information from the _metadata.json_
manifest file as generated by ngc, however this metadata representation
is being replaced by the information emitted into the declaration files.
Resolves FW-1870
PR Close#35695
When computing the dependencies between packages which are not in
node_modules, we may need to rely upon path-mappings to find the path
to the imported entry-point.
This commit allows ngcc to use the path-mappings from a tsconfig
file to find dependencies. By default any tsconfig.json file in the directory
above the `basePath` is loaded but it is possible to use a path to a
specific file by providing the `tsConfigPath` property to mainNgcc,
or to turn off loading any tsconfig file by setting `tsConfigPath` to `null`.
At the command line this is controlled via the `--tsconfig` option.
Fixes#36119
PR Close#36180
When two entry-points overlap, ngcc may attempt to process some
files twice. Previously, when this occured ngcc would just exit with an
error preventing any other entry-points from being processed.
This commit changes ngcc so that if `errorOnFailedEntryPoint` is false, it will
simply log an error and continue to process entry-points. This is useful when
ngcc is processing the entire node_modules folder and there are some invalid
entry-points that the project doesn't actually use.
PR Close#36083
Previously, when an entry-point contained code that caused its compilation
to fail, ngcc would exit in the middle of processing, possibly leaving other
entry-points in a corrupt state.
This change adds a new `errorOnFailedEntryPoint` option to `mainNgcc` that
specifies whether ngcc should exit immediately or log an error and continue
processing other entry-points.
The default is `false` so that ngcc will not error but continue processing
as much as possible. This is useful in post-install hooks, and async CLI
integration, where we do not have as much control over which entry-points
should be processed.
The option is forced to true if the `targetEntryPointPath` is provided,
such as the sync integration with the CLI, since in that case it is targeting
an entry-point that will actually be used in the current project so we do want
ngcc to exit with an error at that point.
PR Close#36083
Later when we implement the ability to continue processing when tasks have
failed to compile, we will also need to avoid processing tasks that depend
upon the failed task.
This refactoring exposes this list of dependent tasks in a way that can be
used to skip processing of tasks that depend upon a failed task.
It also changes the blocking model of the parallel mode of operation so
that non-typings tasks are now blocked on their corresponding typings task.
Previously the non-typings tasks could be triggered to run in parallel to
the typings task, since they do not have a hard dependency on each other,
but this made it difficult to skip task correctly if the typings task failed,
since it was possible that a non-typings task was already in flight when
the typings task failed. The result of this is a small potential degradation
of performance in async parallel processing mode, in the rare cases that
there were not enough unblocked tasks to make use of all the available
workers.
PR Close#36083
Moving the definition of the `onTaskCompleted` callback into `mainNgcc()`
allows it to be configured based on options passed in there more easily.
This will be the case when we want to configure whether to log or throw
an error for tasks that failed to be processed successfully.
This commit also creates two new folders and moves the code around a bit
to make it easier to navigate the code§:
* `execution/tasks`: specific helpers such as task completion handlers
* `execution/tasks/queues`: the `TaskQueue` implementations and helpers
PR Close#36083
When ngcc is compiling an entry-point, it uses a `ReflectionHost` that
is specific to its format, e.g. ES2015, ES5, UMD or CommonJS. During the
compilation of that entry-point however, the reflector may be used to
reflect into external libraries using their declaration files.
Up until now this was achieved by letting all `ReflectionHost` classes
consider their parent class for reflector queries, thereby ending up in
the `TypeScriptReflectionHost` that is a common base class for all
reflector hosts. This approach has proven to be prone to bugs, as
failing to call into the base class would cause incompatibilities with
reading from declaration files.
The observation can be made that there's only two distinct kinds of
reflection host queries:
1. the reflector query is about code that is part of the entry-point
that is being compiled, or
2. the reflector query is for an external library that the entry-point
depends on, in which case the information is reflected
from the declaration files.
The `ReflectionHost` that was chosen for the entry-point should serve
only reflector queries for the first case, whereas a regular
`TypeScriptReflectionHost` should be used for the second case. This
avoids the problem where a format-specific `ReflectionHost` fails to
handle the second case correctly, as it isn't even considered for such
reflector queries.
This commit introduces a `ReflectionHost` that delegates to the
`TypeScriptReflectionHost` for AST nodes within declaration files,
otherwise delegating to the format-specific `ReflectionHost`.
Fixes#35078
Resolves FW-1859
PR Close#36089
The format property for ES5 bundles should be "module" or "es5"/"esm5",
but was "main" instead. The "main" property is appropriate for CommonJS
and UMD bundles, not for ES5 bundles.
PR Close#36089
Currently, when Angular code is built with Bazel and with Ivy, generated
factory shims (.ngfactory files) are not processed via the majority of
tsickle's transforms. This is a subtle effect of the build infrastructure,
but it boils down to a TsickleHost method `shouldSkipTsickleProcessing`.
For ngc_wrapped builds (Bazel + Angular), this method is defined in the
`@bazel/typescript` (aka bazel rules_typescript) implementation of
`CompilerHost`. The default behavior is to skip tsickle processing for files
which are not present in the original `srcs[]` of the build rule. In
Angular's case, this includes all generated shim files.
For View Engine factories this is probably desirable as they're quite
complex and they've never been tested with tsickle. Ivy factories however
are smaller and very straightforward, and it makes sense to treat them like
any other output.
This commit adjusts two independent implementations of
`shouldSkipTsickleProcessing` to enable transformation of Ivy shims:
* in `@angular/bazel` aka ngc_wrapped, the upstream `@bazel/typescript`
`CompilerHost` is patched to treat .ngfactory files the same as their
original source file, with respect to tsickle processing.
It is currently not possible to test this change as we don't have any test
that inspects tsickle output with bazel. It will be extensively tested in
g3.
* in `ngc`, Angular's own implementation is adjusted to allow for the
processing of shims when compiling with Ivy. This enables a unit test to
be written to validate the correct behavior of tsickle when given a host
that's appropriately configured to process factory shims.
For ngtsc-as-a-plugin, a similar fix will need to be submitted upstream in
tsc_wrapped.
PR Close#35848
PR Close#35975
This commit propagates the `sourceSpan` and `valueSpan` of a `VariableBinding`
in a microsyntax expression to `ParsedVariable`, and subsequently to
View Engine Variable AST and Ivy Variable AST.
Note that this commit does not propagate the `keySpan`, because it involves
significant changes to the template AST.
PR Close#36047
Prior to this commit, Ivy compiler didn't handle directive inputs with interpolations located on `<ng-template>` elements (e.g. `<ng-template dir="{{ field }}">`). That was the case for regular inputs as well as inputs that should be processed via i18n subsystem (e.g. `<ng-template i18n-dir dir="Hello {{ name }}">`). This commit adds support for such expressions for explicit `<ng-template>`s as well as a number of tests to confirm the behavior.
Fixes#35752.
PR Close#35984
Previously, calculations related to the position of and difference between
SegmentMarkers required extensive computation based around the line,
line start positions and columns of each segment.
PR Close#36027
The merging algorithm needs to find, for a given segment, what the next
segment in the source file is. This change modifies the `generatedSegment`
properties in the mappings so that they have a link directly to the following
segment.
PR Close#36027
By computing and caching the start of each line, rather than the length
of each line, we can save a lot of duplicated computation in the `segmentDiff()`
and `offsetSegment()` functions.
PR Close#36027
Previously the list of original segments that was searched for incoming
mappings did not differentiate between different original source files.
Now there is a separate array of segments to search for each of the
original source files.
PR Close#36027
The `@angular/core` package has a large number of source files
and mappings which exposed performance issues in the new source-map
flattening algorithm.
This change uses a binary search (rather than linear) when finding
matching mappings to merge. Initial measurements indicate that this
reduces processing time for `@angular/core` by about 50%.
PR Close#36027
ts-api-guardian uses `require.resolve` to resolve the actual and golden files under bazel. In Windows for these files to be resolved correct the full path including the workspace name as per the MANIFEST entries is required.
This used to be the case until the recent changes done to use npm_integration tests
83c74ceacf/tools/public_api_guard/public_api_guard.bzl (L19)83c74ceacf/tools/public_api_guard/public_api_guard.bzl (L28)
```
bazel test //packages/... --test_tag_filters=api_guard
//packages/animations:animations_api (cached) PASSED in 18.4s
//packages/common:common_api (cached) PASSED in 25.5s
//packages/compiler-cli:compiler_options_api (cached) PASSED in 12.4s
//packages/compiler-cli:error_code_api (cached) PASSED in 11.6s
//packages/core:core_api (cached) PASSED in 20.6s
//packages/core:ng_global_utils_api (cached) PASSED in 13.5s
//packages/elements:elements_api (cached) PASSED in 11.9s
//packages/forms:forms_api (cached) PASSED in 13.9s
//packages/http:http_api (cached) PASSED in 14.8s
//packages/localize:localize_api (cached) PASSED in 6.3s
//packages/platform-browser:platform-browser_api (cached) PASSED in 18.1s
//packages/platform-browser-dynamic:platform-browser-dynamic_api (cached) PASSED in 14.0s
//packages/platform-server:platform-server_api (cached) PASSED in 13.9s
//packages/platform-webworker:platform-webworker_api (cached) PASSED in 13.7s
//packages/platform-webworker-dynamic:platform-webworker-dynamic_api (cached) PASSED in 11.7s
//packages/router:router_api (cached) PASSED in 19.9s
//packages/service-worker:service-worker_api (cached) PASSED in 18.1s
//packages/upgrade:upgrade_api (cached) PASSED in 13.5s
```
Reference: DEV-71
PR Close#36034