Angular supports using <style> and <link> tags inline in component
templates, but previously such tags were not implemented within the ngtsc
compiler. This commit introduces that support.
FW-1069 #resolve
PR Close#28997
Prior to this change i18n block bindings were converted to Expressions right away (once we first access them), when in non-i18n cases we processed them differently: the actual conversion happens at instructions generation. Because of this discrepancy, the output for bindings in i18n blocks was generated incorrectly (with invalid indicies in pipeBindN fns and invalid references to non-existent local variables). Now the bindings processing is unified and i18nExp instructions should contain right bind expressions.
PR Close#28969
Prior to this change, the logic that outputs i18n consts (like `const MSG_XXX = goog.getMsg(...)`) didn't have a check whether a given const that represent a certain i18n message was already included into the generated output. This commit adds the logic to mark corresponding i18n contexts after translation was generated, to avoid duplicate consts in the output.
PR Close#28967
During build time we remap particular property bindings, because their names don't match their attribute equivalents (e.g. the property for the `for` attribute is called `htmlFor`). This breaks down if the particular element has an input that has the same name, because the property gets mapped to something invalid.
The following changes address the issue by mapping the name during runtime, because that's when directives are resolved and we know all of the inputs that are associated with a particular element.
PR Close#28765
Prior to this change presence of HTML comments inside <ng-content> caused compiler to throw an error that <ng-content> is not empty. Now HTML comments are not considered as a meaningful content, thus no error is thrown. This behavior is now aligned in Ivy/VE.
PR Close#28849
This commit adds support for the `static: true` flag in `ContentChild`
queries. Prior to this commit, all `ContentChild` queries were resolved
after change detection ran. This is a problem for backwards
compatibility because View Engine also supported "static" queries which
would resolve before change detection.
Now if users add a `static: true` option, the query will be resolved in
creation mode (before change detection runs). For example:
```ts
@ContentChild(TemplateRef, {static: true}) template !: TemplateRef;
```
This feature will come in handy for components that need
to create components dynamically.
PR Close#28811
This commit adds support for the `static: true` flag in
`ViewChild` queries. Prior to this commit, all `ViewChild`
queries were resolved after change detection ran. This is
a problem for backwards compatibility because View Engine
also supported "static" queries which would resolve before
change detection.
Now if users add a `static: true` option, the query will be
resolved in creation mode (before change detection runs).
For example:
```ts
@ViewChild(TemplateRef, {static: true}) template !: TemplateRef;
```
This feature will come in handy for components that need
to create components dynamically.
PR Close#28811
Prior to this commit, the timing of `ViewChild`/`ContentChild` query
resolution depended on the results of each query. If any results
for a particular query were nested inside embedded views (e.g.
*ngIfs), that query would be resolved after change detection ran.
Otherwise, the query would be resolved as soon as nodes were created.
This inconsistency in resolution timing had the potential to cause
confusion because query results would sometimes be available in
ngOnInit, but sometimes wouldn't be available until ngAfterContentInit
or ngAfterViewInit. Code depending on a query result could suddenly
stop working as soon as an *ngIf or an *ngFor was added to the template.
With this commit, users can dictate when they want a particular
`ViewChild` or `ContentChild` query to be resolved with the `static`
flag. For example, one can mark a particular query as `static: false`
to ensure change detection always runs before its results are set:
```ts
@ContentChild('foo', {static: false}) foo !: ElementRef;
```
This means that even if there isn't a query result wrapped in an
*ngIf or an *ngFor now, adding one to the template later won't change
the timing of the query resolution and potentially break your component.
Similarly, if you know that your query needs to be resolved earlier
(e.g. you need results in an ngOnInit hook), you can mark it as
`static: true`.
```ts
@ViewChild(TemplateRef, {static: true}) foo !: TemplateRef;
```
Note: this means that your component will not support *ngIf results.
If you do not supply a `static` option when creating your `ViewChild` or
`ContentChild` query, the default query resolution timing will kick in.
Note: This new option only applies to `ViewChild` and `ContentChild`
queries, not `ViewChildren` or `ContentChildren` queries, as those types
already resolve after CD runs.
PR Close#28810
Accounts for schemas in when validating properties in Ivy.
This PR resolves FW-819.
A couple of notes:
* I had to rework the test slightly, in order to have it fail when we expect it to. The one in master is passing since Ivy's validation runs during the update phase, rather than creation.
* I had to deviate from the design in FW-819 and not add an `enableSchema` instruction, because the schema is part of the `NgModule` scope, however the scope is only assigned to a component once all of the module's declarations have been resolved and some of them can be async. Instead, I opted to have the `schemas` on the component definition.
PR Close#28637
Since we build and publish the individual packages
using Bazel and `build.sh` has been removed, we can
safely remove the `rollup.config.js` files which are no
longer needed because the `ng_package` bazel rule
automatically handles the rollup settings and globals.
PR Close#28646
In the past, @Injectable had no side effects and existing Angular code is
therefore littered with @Injectable usage on classes which are not intended
to be injected.
A common example is:
@Injectable()
class Foo {
constructor(private notInjectable: string) {}
}
and somewhere else:
providers: [{provide: Foo, useFactory: ...})
Here, there is no need for Foo to be injectable - indeed, it's impossible
for the DI system to create an instance of it, as it has a non-injectable
constructor. The provider configures a factory for the DI system to be
able to create instances of Foo.
Adding @Injectable in Ivy signifies that the class's own constructor, and
not a provider, determines how the class will be created.
This commit adds logic to compile classes which are marked with @Injectable
but are otherwise not injectable, and create an ngInjectableDef field with
a factory function that throws an error. This way, existing code in the wild
continues to compile, but if someone attempts to use the injectable it will
fail with a useful error message.
In the case where strictInjectionParameters is set to true, a compile-time
error is thrown instead of the runtime error, as ngtsc has enough
information to determine when injection couldn't possibly be valid.
PR Close#28523
Testing of Ivy revealed two bugs in the AstMemoryEfficientTransformer
class, a part of existing View Engine compiler infrastructure that's
reused in Ivy. These bugs cause AST expressions not to be transformed
under certain circumstances.
The fix is simple, and tests are added to ensure the specific expression
forms that trigger the issue compile properly under Ivy.
PR Close#28523
Prior to this update we had separate contentQueries and contentQueriesRefresh functions to handle creation and update phases. This approach was inconsistent with View Queries, Host Bindings and Template functions that we generate for Component/Directive defs. Now the mentioned 2 functions are combines into one (contentQueries), creation and update logic is separated with RenderFlags (similar to what we have in other generated functions).
PR Close#28503
With #28594 we refactored the `@angular/compiler` slightly to
allow opting out from external symbol re-exports which are
enabled by default.
Since symbol re-exports only benefit projects which have a
very strict dependency enforcement, external symbols should
not be re-exported by default as this could grow the size of
factory files and cause unexpected behavior with Angular's
AOT symbol resolving (e.g. see: #25644).
Note that the common strict dependency enforcement for source
files does still work with external symbol re-exports disabled,
but there are also strict dependency checks that enforce strict
module dependencies also for _generated files_ (such as the
ngfactory files). This is how Google3 manages it's dependencies
and therefore external symbol re-exports need to be enabled within
Google3.
Also "ngtsc" also does not provide any way of using external symbol
re-exports, so this means that with this change, NGC can partially
match the behavior of "ngtsc" then (unless explicitly opted-out).
As mentioned before, internally at Google symbol re-exports need to
be still enabled, so the `ng_module` Bazel rule will enable the symbol
re-exports by default when running within Blaze.
Fixes#25644.
PR Close#28633
Previously, using a pipe in an input binding on an ng-template would
evaluate the pipe in the context of node that was processed before the
template. This caused the retrieval of e.g. ChangeDetectorRef to be
incorrect, resulting in one of the following bugs depending on the
template's structure:
1. If the template was at the root of a view, the previously processed
node would be the component's host node outside of the current view.
Accessing that node in the context of the current view results in a crash.
2. For templates not at the root, the ChangeDetectorRef injected into the
pipe would correspond with the previously processed node. If that node
hosts a component, the ChangeDetectorRef would not correspond with the
view that the ng-template is part of.
The solution to the above problem is two-fold:
1. Template compilation is adjusted such that the template instruction
is emitted before any instructions produced by input bindings, such as
pipes. This ensures that pipes are evaluated in the context of the
template's container node.
2. A ChangeDetectorRef can be requested for container nodes.
Fixes#28587
PR Close#27565
During analysis, the `ComponentDecoratorHandler` passes the component
template to the `parseTemplate()` function. Previously, there was little or
no information about the original source file, where the template is found,
passed when calling this function.
Now, we correctly compute the URL of the source of the template, both
for external `templateUrl` and in-line `template` cases. Further in the
in-line template case we compute the character range of the template
in its containing source file; *but only in the case that the template is
a simple string literal*. If the template is actually a dynamic value like
an interpolated string or a function call, then we do not try to add the
originating source file information.
The translator that converts Ivy AST nodes to TypeScript now adds these
template specific source mappings, which account for the file where
the template was found, to the templates to support stepping through the
template creation and update code when debugging an Angular application.
Note that some versions of TypeScript have a bug which means they cannot
support external template source-maps. We check for this via the
`canSourceMapExternalTemplates()` helper function and avoid trying to
add template mappings to external templates if not supported.
PR Close#28055
When template bindings are being parsed the event handlers
were receiving a source span that included the whole attribute.
Now they get a span that is focussed on the handler itself.
PR Close#28055
The `convertActionBinding()` now accepts an optional `baseSourceSpan`,
which is the start point of the action expression being converted in the
original source code. This is used to compute the original position of
the output AST nodes.
PR Close#28055
When tokenizing markup (e.g. HTML) element attributes
can have quoted or unquoted values (e.g. `a=b` or `a="b"`).
The `ATTR_VALUE` tokens were capturing the quotes, which
was inconsistent and also affected source-mapping.
Now the tokenizer captures additional `ATTR_QUOTE` tokens,
which the HTML related parsers understand and factor into their
token parsing.
PR Close#28055
There are some differences in how ivy maps template source
compared to View Engine. In this commit we recreate the View Engine
tests for ivy.
PR Close#28055
Previously the call to `extractSourceMap()` would only work if the
`//#sourceMappingURL ...` was the last line of the file. This doesn't
work if the code is JIT evaluated as the comment is actually the last
line in the body of a function, wrapped by curly-braces.
PR Close#28055
When testing JIT code, it is useful to be able to access the
generated JIT source. Previously this is done by spying on the
global `Function` object, to capture the code when it is being
evaluated. This is problematic because you can only capture
the body of the function, and not the arguments, which messes
up line and column positions for source mapping for instance.
Now the code that generates and then evaluates JIT code is
wrapped in a `JitEvaluator` class, making it possible to provide
a mock implementation that can capture the generated source of
the function passed to `executeFunction(fn: Function, args: any[])`.
PR Close#28055
In order to support source mapping of templates, we need
to be able to tokenize the template in its original context.
When the template is defined inline as a JavaScript string
in a TS/JS source file, the tokenizer must be able to handle
string escape sequences, such as `\n` and `\"` as they
appear in the original source file.
This commit teaches the lexer how to unescape these
sequences, but only when the `escapedString` option is
set to true. Otherwise there is no change to the tokenizing
behaviour.
PR Close#28055
The lexer that does the tokenizing can now process only a part the source
string, by passing a `range` property in the `options` argument. The
locations of the nodes that are tokenized will now take into account the
position of the span in the context of the original source string.
This `range` option is, in turn, exposed from the template parser as well.
Being able to process parts of files helps to enable SourceMap support
when compiling inline component templates.
PR Close#28055
When we added the strict null checks, the lexer had some `!`
operators added to prevent the compilation from failing.
This commit resolves this problem correctly and removes the
hacks.
Also the comment
```
// Note: this is always lowercase!
```
has been removed as it is no longer true.
See #24571
PR Close#28055
This commit consolidates the options that can modify the
parsing of text (e.g. HTML, Angular templates, CSS, i18n)
into an AST for further processing into a single `options`
hash.
This makes the code cleaner and more readable, but also
enables us to support further options to parsing without
triggering wide ranging changes to code that should not
be affected by these new options. Specifically, it will let
us pass information about the placement of a template
that is being parsed in its containing file, which is essential
for accurate SourceMap processing.
PR Close#28055
Up until now, `[style]` and `[class]` bindings (the map-based ones) have only
worked as template bindings and have not been supported at all inside of host
bindings. This patch ensures that multiple host binding sources (components and
directives) all properly assign style values and merge them correctly in terms
of priority.
Jira: FW-882
PR Close#28246
Previously, it wasn't possible to compile template that contains pipe in context of ternary operator `{{ 1 ? 2 : 0 | myPipe }}` due to the error `Error: Illegal state: Pipes should have been converted into functions. Pipe: async`.
This PR fixes a typo in expression parser so that pipes are correctly converted into functions.
PR Close#28635
Prior to this change in Ivy we had strict check that disabled non-unique #localRefs usage within a given template. While this limitation was technically present in View Engine, in many cases View Engine neglected this restriction and as a result, some apps relied on a fact that multiple non-unique #localRefs can be defined and utilized to query elements via @ViewChild(ren) and @ContentChild(ren). In order to provide better compatibility with View Engine, this commit removes existing restriction.
As a part of this commit, are few tests were added to verify VE and Ivy compatibility in most common use-cases where multiple non-unique #localRefs were used.
PR Close#28627
Currently external static symbols which are referenced by AOT
compiler generated code, will be re-exported in the corresponding
`.ngfactory` files.
This way of handling the symbol resolution has been introduced in
favor of avoding dynamically generated module dependencies. This
behavior therefore avoids any strict dependency failures.
Read more about a particular scenario here: https://github.com/angular/angular/issues/25644#issuecomment-458354439
Now with `ngtsc`, this behavior has changed since `ngtsc` just
introduces these module dependencies in order to properly reference
the external symbol from its original location (also eliminating the need
for factories). Similarly we should provide a way to use the same
behavior with `ngc` because the downside of using the re-exported symbol
resolution is that user-code transformations (e.g. the `ngInjectableDef`
metadata which is added to the user source code), can resolve external
symbols to previous factory symbol re-exports. This is a critical issue
because it means that the actual JIT code references factory files in order
to access external symbols. This means that the generated output cannot
shipped to NPM without shipping the referenced factory files.
A specific example has been reported here: https://github.com/angular/angular/issues/25644#issue-353554070
PR Close#28594
Prior to this change there was no i18n id sanitization before we output goog.getMsg calls. Due to the fact that message ids are used as a part of const names, some characters were bcausing issues while executing generated code. This commit adds sanitization to i18n ids used to generate i18n-related consts.
PR Close#28522
Prior to this change, generation of host bindings and host styles was guarded by the "if" statement, which always returned true. Enforcing more strict check for bindings length broke some tests, since host styling instructions generation were inside the same "if" block. This update decouples bindings instruction generation from styling instructions, which makes it less error prone.
PR Close#28379
Prior to this change we may encounter some errors (like pipes being used where they should not be used) while compiling Host Bindings and Listeners. With this update we move validation logic to the analyze phase and throw an error if something is wrong. This also aligns error messages between Ivy and VE.
PR Close#28356
Prior to this change contentQueriesRefresh functions that represent refresh logic for @ContentQuery list were not composable, which caused problems in case one Directive inherits another one and both of them contain Content Queries. Due to the fact that we used indices to reference queries in refresh function, results were placed into wrong Queries. In order to avoid that we no longer use indices to reference queries and instead maintain current content query index while iterating through them. This allows us to compose contentQueriesRefresh functions and make inheritance feature work with Content Queries.
PR Close#28324
Currently `compileNgModule` generates an empty array for optional fields that are omitted from an `NgModule` declaration (e.g. `bootstrap`, `exports`). This isn't necessary, because `defineNgModule` has some code to default these fields to empty arrays at runtime if they aren't defined. The following changes will only output code if there are values for the particular field.
PR Close#28387
By its nature, Ivy alters the import graph of a TS program, adding imports
where template dependencies exist. For example, if ComponentA uses PipeB
in its template, Ivy will insert an import of PipeB into the file in which
ComponentA is declared.
Any insertion of an import into a program has the potential to introduce a
cycle into the import graph. If for some reason the file in which PipeB is
declared imports the file in which ComponentA is declared (maybe it makes
use of a service or utility function that happens to be in the same file as
ComponentA) then this could create an import cycle. This turns out to
happen quite regularly in larger Angular codebases.
TypeScript and the Ivy runtime have no issues with such cycles. However,
other tools are not so accepting. In particular the Closure Compiler is
very anti-cycle.
To mitigate this problem, it's necessary to detect when the insertion of
an import would create a cycle. ngtsc can then use a different strategy,
known as "remote scoping", instead of directly writing a reference from
one component to another. Under remote scoping, a function
'setComponentScope' is called after the declaration of the component's
module, which does not require the addition of new imports.
FW-647 #resolve
PR Close#28169
Prior to this change `viewQuery` functions that represent @ViewQuery list were not composable, which caused problems in case one Component/Directive inherits another one and both of them contain View Queries. Due to the fact that we used indices to reference queries, resulting query set was corrupted (child component queries were overridden by super class ones). In order to avoid that we no longer use indices assigned at compile time and instead maintain current view query index while iterating through them. This allows us to compose `viewQuery` functions and make inheritance feature work with View Queries.
PR Close#28309
- Wraps the NgOnChangesFeature in a factory such that no side effects occur in the module root
- Adds comments to ngInherit property on feature definition interface to help guide others not to make the same mistake
- Updates compiler to generate the feature properly after the change to it being a factory
- Updates appropriate tests
PR Close#28187
Fixes the template generation function generating an incorrect tag name when the element has a namespace (e.g. `:svg:circle` gets generated rather than `circle`).
PR Close#28298
Due to the fact that animations in Angular are defined in the component metadata,
all animation trigger definitions are localized to the component and are
inaccessible outside of it. Animation host listeners in Ivy are
rendered in the context of the parent component, but the VE renders them
differently. This patch ensures that animation host listeners are
always registered in the sub component's renderer
Jira issue: FW-943
Jira issue: FW-958
PR Close#28210
In Ivy when elements are created a series of static attribute names are provided
over to the construction instruction of that element. Static attribute names
include non-binding attribues (like `<div selected>`) as well as animation bindings
that do not have a RHS value (like `<div @foo>`). Because of this distinction,
value-less animation triggers are rendered first before value-full animation
bindings are and this improper ordering has caused various existing tests to fail.
This patch ensures that animation bindings are evaluated in the order that they
exist within the HTML template code (or host binding code).
PR Close#28165