The `I18nComponent` was using `!` for some of its properties
because it had not initialized them. This is now resolved by explictly
marking them as optional.
PR Close#36741
Move the creation of the results objects into the wrapper functions.
This makes it easier to reason about what the parser and lexer classes
are responsible for - you create a new object for each tokenization or
parsing activity and they hold the state of the activity.
PR Close#36741
This property can actually be `null` when called from the language-service.
This change allows us to remove the use of `!` to subvert the type system.
PR Close#36741
Prior to this change, there was a problem while matching template attributes, which mistakenly took i18n attributes (that might be present in attrs array after template ones) into account. This commit updates the logic to avoid template attribute matching logic from entering the i18n section and as a result this also allows generating proper i18n attributes sections instead of keeping these attribute in plain form (with their values) in attribute arrays.
PR Close#36422
Previously we had a singleton `ROOT_SCOPE` object, from
which all `BindingScope`s derived. But this caused ngcc to
produce non-deterministic output when running multiple workers
in parallel, since each process had its own `ROOT_SCOPE`.
In reality there is no need for `BindingScope` reference names
to be unique across an entire application (or in the case of ngcc
across all the libraries). Instead we just need uniqueness within
a template.
This commit changes the compiler to create a new root `BindingScope`
each time it compiles a component's template.
Resolves#35180
PR Close#36362
From G3 bug ID: 116443331
The View Engine compiler crashes when it tries to compile a test in JIT mode
that includes the d3-scale-chromatic library [1]. The d3 package initializes
some arrays using the following pattern:
```js
export var scheme = new Array(3).concat(
"d8b365f5f5f55ab4ac",
// ... more entries
).map(colors);
```
The stack trace from the crash is as follows:
```
TypeError: Cannot read property 'visitExpression' of undefined
at ../../../third_party/javascript/angular2/rc/packages/compiler/src/output/abstract_emitter.ts:505:39
at JitEmitterVisitor.AbstractEmitterVisitor.visitAllObjects third_party/javascript/angular2/rc/packages/compiler/src/output/abstract_emitter.ts?l=526
at JitEmitterVisitor.AbstractEmitterVisitor.visitAllExpressions third_party/javascript/angular2/rc/packages/compiler/src/output/abstract_emitter.ts?l=505
at JitEmitterVisitor.AbstractEmitterVisitor.visitLiteralArrayExpr third_party/javascript/angular2/rc/packages/compiler/src/output/abstract_emitter.ts?l=484
at LiteralArrayExpr.visitExpression third_party/javascript/angular2/rc/packages/compiler/src/output/output_ast.ts?l=791
at ../../../third_party/javascript/angular2/rc/packages/compiler/src/output/abstract_emitter.ts:492:19
at JitEmitterVisitor.AbstractEmitterVisitor.visitAllObjects third_party/javascript/angular2/rc/packages/compiler/src/output/abstract_emitter.ts?l=526
at JitEmitterVisitor.AbstractEmitterVisitor.visitLiteralMapExpr third_party/javascript/angular2/rc/packages/compiler/src/output/abstract_emitter.ts?l=490
at LiteralMapExpr.visitExpression third_party/javascript/angular2/rc/packages/compiler/src/output/output_ast.ts?l=819
at ../../../third_party/javascript/angular2/rc/packages/compiler/src/output/abstract_emitter.ts:505:39
at JitEmitterVisitor.AbstractEmitterVisitor.visitAllObjects third_party/javascript/angular2/rc/packages/compiler/src/output/abstract_emitter.ts?l=526
at JitEmitterVisitor.AbstractEmitterVisitor.visitAllExpressions third_party/javascript/angular2/rc/packages/compiler/src/output/abstract_emitter.ts?l=505
at JitEmitterVisitor.AbstractEmitterVisitor.visitInvokeFunctionExpr third_party/javascript/angular2/rc/packages/compiler/src/output/abstract_emitter.ts?l=318
at JitEmitterVisitor.AbstractJsEmitterVisitor.visitInvokeFunctionExpr third_party/javascript/angular2/rc/packages/compiler/src/output/abstract_js_emitter.ts?l=112
at InvokeFunctionExpr.visitExpression third_party/javascript/angular2/rc/packages/compiler/src/output/output_ast.ts?l=440
```
This is because the corresponding output AST for the array is of the form
```ts
[
undefined,
undefined,
undefined,
o.LiteralExpr,
// ...
]
```
The output AST is clearly malformed and breaks the type representation of
`LiteralArrayExpr` in which every entry is expected to be of type `Expression`.
This commit fixes the bug by using a plain `for` loop to iterate over the
entire length of the holey array and convert undefined elements to
`LiteralExpr`.
[1]: https://github.com/d3/d3-scale-chromatic/blob/master/src/diverging/BrBG.js
PR Close#36343
This commit augments the `FactoryDef` declaration of Angular decorated
classes to contain information about the parameter decorators used in
the constructor. If no constructor is present, or none of the parameters
have any Angular decorators, then this will be represented using the
`null` type. Otherwise, a tuple type is used where the entry at index `i`
corresponds with parameter `i`. Each tuple entry can be one of two types:
1. If the associated parameter does not have any Angular decorators,
the tuple entry will be the `null` type.
2. Otherwise, a type literal is used that may declare at least one of
the following properties:
- "attribute": if `@Attribute` is present. The injected attribute's
name is used as string literal type, or the `unknown` type if the
attribute name is not a string literal.
- "self": if `@Self` is present, always of type `true`.
- "skipSelf": if `@SkipSelf` is present, always of type `true`.
- "host": if `@Host` is present, always of type `true`.
- "optional": if `@Optional` is present, always of type `true`.
A property is only present if the corresponding decorator is used.
Note that the `@Inject` decorator is currently not included, as it's
non-trivial to properly convert the token's value expression to a
type that is valid in a declaration file.
Additionally, the `ComponentDefWithMeta` declaration that is created for
Angular components has been extended to include all selectors on
`ng-content` elements within the component's template.
This additional metadata is useful for tooling such as the Angular
Language Service, as it provides the ability to offer suggestions for
directives/components defined in libraries. At the moment, such
tooling extracts the necessary information from the _metadata.json_
manifest file as generated by ngc, however this metadata representation
is being replaced by the information emitted into the declaration files.
Resolves FW-1870
PR Close#35695
Previously, an expansion case could only start with an alpha numeric character.
This commit fixes this by allowing an expansion case to start with any character
except `}`.
The [ICU spec](http://userguide.icu-project.org/formatparse/messages) is pretty vague:
> Use a "select" argument to select sub-messages via a fixed set of keywords.
It does not specify what can be a "keyword" but from looking at the surrounding syntax it
appears that it can indeed be any string that does not contain a `}` character.
Closes#31586
PR Close#36123
This commit propagates the correct value span in an ExpressionBinding of
a microsyntax expression to ParsedProperty, which in turn porpagates the
span to the template ASTs (both VE and Ivy).
PR Close#36133
This commit propagates the `sourceSpan` and `valueSpan` of a `VariableBinding`
in a microsyntax expression to `ParsedVariable`, and subsequently to
View Engine Variable AST and Ivy Variable AST.
Note that this commit does not propagate the `keySpan`, because it involves
significant changes to the template AST.
PR Close#36047
To create the symbols of a module, the static symbol resolver first gets
all the symbols loaded in the module by an export statement. For `export
* from './module'`-like statements, all symbols from `./module` must be
loaded. In cases where the exporting module is actually the same module
that the export statement is in, this causes an unbounded recursive
resolution of the same module.
Exports of the same module are not needed, as their symbols will be
resolved when the symbols in the module metadata's `metadata` key is
explored.
This commit resolves the unbounded recursion by loading exporting
modules only if they differ from the module currently being resolved.
Closes https://github.com/angular/vscode-ng-language-service/issues/593
PR Close#35262
Prior to this commit, Ivy compiler didn't handle directive inputs with interpolations located on `<ng-template>` elements (e.g. `<ng-template dir="{{ field }}">`). That was the case for regular inputs as well as inputs that should be processed via i18n subsystem (e.g. `<ng-template i18n-dir dir="Hello {{ name }}">`). This commit adds support for such expressions for explicit `<ng-template>`s as well as a number of tests to confirm the behavior.
Fixes#35752.
PR Close#35984
This commit adds fine-grained text spans to TemplateBinding for microsyntax expressions.
1. Source span
By convention, source span refers to the entire span of the binding,
including its key and value.
2. Key span
Span of the binding key, without any whitespace or keywords like `let`
The value span is captured by the value expression AST.
This is part of a series of PRs to fix source span mapping in microsyntax expression.
For more info, see the doc https://docs.google.com/document/d/1mEVF2pSSMSnOloqOPQTYNiAJO0XQxA1H0BZyESASOrE/edit?usp=sharing
PR Close#35897
TemplateAst values are currently typed as the base class AST, but they
are actually constructed with ASTWithSource. Type them as such, because
ASTWithSource gives more information about the consumed expression AST
to downstream customers (namely, the expression AST source).
Unblocks #35271
PR Close#35892
`ɵɵNgOnChangesFeature()` would set `ngInherit`, which is a side effect and also not necessary. This was pulled out to module scope so the function itself can be pure. Since it only curries another function, the call is entirely unnecessary. Updated the compiler to only generate a reference to this function, rather than a call to it, and removed the extra curry indirection.
PR Close#35769
Before this change `[class]` and `[className]` were both converted into `ɵɵclassMap`. The implication of this is that at runtime we could not differentiate between the two and as a result we treated `@Input('class')` and `@Input('className)` as equivalent.
This change makes `[class]` and `[className]` distinct. The implication of this is that `[class]` becomes `ɵɵclassMap` instruction but `[className]` becomes `ɵɵproperty' instruction. This means that `[className]` will no longer participate in styling and will overwrite the DOM `class` value.
Fix#35577
PR Close#35668
Prior to this commit, i18n attributes defined on `<ng-template>` tags were not processed by the compiler. This commit adds the necessary logic to handle i18n attributes in the same way how these attrs are processed for regular elements.
PR Close#35681
This commit removes the `NullAstVisitor` and `visitAstChildren` exported
from `packages/compiler/src/expression_parser/ast.ts` because they
contain duplicate and buggy implementation, and their use cases could be
sufficiently covered by `RecursiveAstVisitor` if the latter implements the
`visit` method. This use case is only needed in the language service.
With this change, any visitor that extends `RecursiveAstVisitor` could
just define their own `visit` function and the parent class will behave
correctly.
A bit of historical context:
In language service, we need a way to tranverse the expression AST in a
selective manner based on where the user's cursor is. This means we need a
"filtering" function to decide which node to visit and which node to not
visit. Instead of refactoring `RecursiveAstVisitor` to support this,
`visitAstChildren` was created. `visitAstChildren` duplicates the
implementation of `RecursiveAstVisitor`, but introduced some bugs along
the way. For example, in `visitKeyedWrite`, it visits
```
obj -> key -> obj
```
instead of
```
obj -> key -> value
```
Moreover, because of the following line
```
visitor.visit && visitor.visit(ast, context) || ast.visit(visitor, context);
```
`visitAstChildren` visits every node *twice*.
PR Close#35619
The only test case for `ngFor` exercises an incorrect usage which causes
two bound attributes to be generated . This commit adds a canonical and
correct usage to show the difference between the two.
PR Close#35671
* it's tricky to get out of the runfiles tree with `bazel test` as `BUILD_WORKSPACE_DIRECTORY` is not set but I employed a trick to read the `DO_NOT_BUILD_HERE` file that is one level up from `execroot` and that contains the workspace directory. This is experimental and if `bazel test //:test.debug` fails than `bazel run` is still guaranteed to work as `BUILD_WORKSPACE_DIRECTORY` will be set in that context
* test //integration:bazel_test and //integration:bazel-schematics_test exclusively
* run "exclusive" and "manual" bazel-in-bazel integration tests in their own CI job as they take 8m+ to execute
```
//integration:bazel-schematics_test PASSED in 317.2s
//integration:bazel_test PASSED in 167.8s
```
* Skip all integration tests that are now handled by angular_integration_test except the tests that are tracked for payload size; these are:
- cli-hello-world*
- hello_world__closure
* add & pin @babel deps as newer versions of babel break //packages/localize/src/tools/test:test
@babel/core dep had to be pinned to 7.6.4 or else //packages/localize/src/tools/test:test failed. Also //packages/localize uses @babel/generator, @babel/template, @babel/traverse & @babel/types so these deps were added to package.json as they were not being hoisted anymore from @babel/core transitive.
NB: integration/hello_world__systemjs_umd test must run with systemjs 0.20.0
NB: systemjs must be at 0.18.10 for legacy saucelabs job to pass
NB: With Bazel 2.0, the glob for the files to test `"integration/bazel/**"` is empty if integation/bazel is in .bazelignore. This glob worked under these conditions with 1.1.0. I did not bother testing with 1.2.x as not having integration/bazel in .bazelignore is correct.
PR Close#33927
In #33705 we made it so that we generate pure functions for object/array literals in order to avoid having them be shared across elements/views. The problem this introduced is that further down the line the `ContantPool` uses the generated literal in order to figure out whether to share an existing factory or to create a new one. `ConstantPool` determines whether to share a factory by creating a key from the AST node and using it to look it up in the factory cache, however the key generation function didn't handle function invocations and replaced them with `null`. This means that the key for `{foo: pureFunction0(...)}` and `{foo: null}` are the same.
These changes rework the logic so that instead of generating a `null` key
for function invocations, we generate a variable called `<unknown>` which
shouldn't be able to collide with anything.
Fixes#35298.
PR Close#35481
Currently Ivy always generates the `$event` function argument, even if it isn't being used by the listener expressions. This can lead to unnecessary bytes being generated, because optimizers won't remove unused arguments by default. These changes add some logic to avoid adding the argument when it isn't required.
PR Close#35097
Currently, would-be binding attributes that are missing binding names
are not parsed as bindings, and fall through as regular attributes. In
some cases, this can lead to a runtime error; trying to assign `#` as a
DOM attribute in an element like in `<div #></div>` fails because `#` is
not a valid attribute name.
Attributes composed of binding prefixes but not defining a binding
should be considered invalid, as this almost certainly indicates an
unintentional elision of a binding by the developer. This commit
introduces error reporting for attributes with a binding name prefix but
no actual binding name.
Closes https://github.com/angular/vscode-ng-language-service/issues/293.
PR Close#34595
We had some logic for generating and passing in the `elIndex` parameter into the `hostBindings` function, but it wasn't actually being used for anything. The only place left that had a reference to it was the `StylingBuilder` and it only stored it without referencing it again.
PR Close#34969
Previously we would write to class/style as strings `element.className` and `element.style.cssText`. Turns out that approach is good for initial render but not good for updates. Updates using this approach are problematic because we have to check to see if there was an out of bound write to style and than perform reconciliation. This also requires the browser to bring up CSS parser which is expensive.
Another problem with old approach is that we had to queue the DOM writes and flush them twice. Once on element advance instruction and once in `hostBindings`. The double flushing is expensive but it also means that a directive can observe that styles are not yet written (they are written after directive executes.)
The new approach uses `element.classList.add/remove` and `element.style.setProperty/removeProperty` API for updates only (it continues to use `element.className` and `element.style.cssText` for initial render as it is cheaper.) The other change is that the styling changes are applied immediately (no queueing). This means that it is the instruction which computes priority. In some circumstances it may result in intermediate writes which are than overwritten with new value. (This should be rare)
Overall this change deletes most of the previous code and replaces it with new simplified implement. The simplification results in code savings.
PR Close#34804
NOTE: This change must be reverted with previous deletes so that it code remains in build-able state.
This change deletes old styling code and replaces it with a simplified styling algorithm.
The mental model for the new algorithm is:
- Create a linked list of styling bindings in the order of priority. All styling bindings ere executed in compiled order and than a linked list of bindings is created in priority order.
- Flush the style bindings at the end of `advance()` instruction. This implies that there are two flush events. One at the end of template `advance` instruction in the template. Second one at the end of `hostBindings` `advance` instruction when processing host bindings (if any).
- Each binding instructions effectively updates the string to represent the string at that location. Because most of the bindings are additive, this is a cheap strategy in most cases. In rare cases the strategy requires removing tokens from the styling up to this point. (We expect that to be rare case)S Because, the bindings are presorted in the order of priority, it is safe to resume the processing of the concatenated string from the last change binding.
PR Close#34616
Compiler keeps track of number of slots (`vars`) which are needed for binding instructions. Normally each binding instructions allocates a single slot in the `LView` but styling instructions need to allocate two slots.
PR Close#34616
This change moves information from instructions to declarative position:
- `ɵɵallocHostVars(vars)` => `DirectiveDef.hostVars`
- `ɵɵelementHostAttrs(attrs)` => `DirectiveDef.hostAttrs`
When merging directives it is necessary to know about `hostVars` and `hostAttrs`. Before this change the information was stored in the `hostBindings` function. This was problematic, because in order to get to the information the `hostBindings` would have to be executed. In order for `hostBindings` to be executed the directives would have to be instantiated. This means that the directive instantiation would happen before we had knowledge about the `hostAttrs` and as a result the directive could observe in the constructor that not all of the `hostAttrs` have been applied. This further complicates the runtime as we have to apply `hostAttrs` in parts over many invocations.
`ɵɵallocHostVars` was unnecessarily complicated because it would have to update the `LView` (and Blueprint) while existing directives are already executing. By moving it out of `hostBindings` function we can access it statically and we can create correct `LView` (and Blueprint) in a single pass.
This change only changes how the instructions are generated, but does not change the runtime much. (We cheat by emulating the old behavior by calling `ɵɵallocHostVars` and `ɵɵelementHostAttrs`) Subsequent change will refactor the runtime to take advantage of the static information.
PR Close#34683
This change introduces class/style reconciliation algorithm for DOM elements.
NOTE: The code is not yet hooked up, it will be used by future style algorithm.
Background:
Styling algorithm currently has [two paths](https://hackmd.io/@5zDGNGArSxiHhgvxRGrg-g/rycZk3N5S)
when computing how the style should be rendered.
1. A direct path which concatenates styling and uses `elemnent.className`/`element.style.cssText` and
2. A merge path which uses internal data structures and uses `element.classList.add/remove`/`element.style[property]`.
The situation is confusing and hard to follow/maintain. So a future PR will remove the merge-path and do everything with
direct-path. This however breaks when some other code adds class or style to the element without Angular's knowledge.
If this happens instead of switching from direct-path to merge-path algorithm, this change provides a different mental model
whereby we always do `direct-path` but the code which writes to the DOM detects the situation and reconciles the out of bound write.
The reconciliation process is as follows:
1. Detect that no one has modified `className`/`cssText` and if so just write directly (fast path).
2. If out of bounds write did occur, switch from writing using `className`/`cssText` to `element.classList.add/remove`/`element.style[property]`.
This does require that the write function computes the difference between the previous Angular expected state and current Angular state.
(This requires a parser. The advantage of having a parser is that we can support `style="width: {{exp}}px" kind of bindings.`)
Compute the diff and apply it in non destructive way using `element.classList.add/remove`/`element.style[property]`
Properties of approach:
- If no out of bounds style modification:
- Very fast code path: Just concatenate string in right order and write them to DOM.
- Class list order is preserved
- If out of bounds style modification detected:
- Penalty for parsing
- Switch to non destructive modification: `element.classList.add/remove`/`element.style[property]`
- Switch to alphabetical way of setting classes.
PR Close#34004
This patch removes the need for the styleSanitizer() instruction in
favor of passing the sanitizer into directly into the styleProp
instruction.
This patch also increases the binding index size for all style/class bindings in preparation for #34418
PR Close#34480
Pipes in host binding expressions are not supported in View Engine and Ivy, but in some more complex cases (like `(value | pipe) === true`) compiler was not reporting errors. This commit extends Ivy logic to detect pipes in host binding expressions and throw in cases bindings are present. View Engine behavior remains the same.
PR Close#34655
Typescript 3.7 now emits d.ts files for getters differently than prior versions,
and there seems to be a bug in how it strips private types without replacing them
with explicit 'any' type. This then leads to compilation failures in projects compiled
against our packages that don't have skipLibCheck turned on but do have strict or
noImplicitAny check on.
I'm working around this by marking the affected getters as @internal and
adding a test to prevent future regressions.
I believe this is a TypeScript bug, and I filed a bug report:
https://github.com/microsoft/TypeScript/issues/36216
PR Close#34798
The major one that affects the angular repo is the removal of the bootstrap attribute in nodejs_binary, nodejs_test and jasmine_node_test in favor of using templated_args --node_options=--require=/path/to/script. The side-effect of this is that the bootstrap script does not get the require.resolve patches with explicitly loading the targets _loader.js file.
PR Close#34736