In TypeScript 3.9 some re-export syntaxes have changed to be getter
functions (created by calls to `Object.defineProperty()`) rather than
simple property accessors.
This commit adds support into the CommonJS and UMD reflection hosts
for this style of re-export syntax.
PR Close#36989
In the CommonJS and UMD reflection hosts, the logic for computing the
`viaModule` property of `Declaration` objects was not correct for some
cases when getting the exports of modules.
In these cases it was setting `viaModule` to the path of the local module
rather than `null`.
PR Close#36989
The term `ReexportStatement` is too general for this particular concept.
Here the re-export actually refers to a wildcard where all the module
exports are being re-exported.
When we introduce other re-export statement types later this will be
confusing.
PR Close#36989
Using backtick multiline strings leads to confusing layout
that does not fit with the surrounding indentation. Also it
can lead to test fragility due to automated code formatting.
This commit changes just one set of subject code to use
a more resilient string concatenation approach.
PR Close#36989
After the refactoring of the reflection hosts to accommodate
ES2015 classes wrapped in IIFEs. The same treatment needs to
be applied to the rendering formatters.
PR Close#36989
In TS 3.9, ES2015 output can contain ES classes that are wrapped in an
IIFE. So now ES2015 class declarations can look like one of:
```
class OuterClass1 {}
```
```
let OuterClass = class InnerClass {};
```
```
var AliasClass;
let OuterClass = AliasClass = class InnerClass {};
```
```
let OuterClass = (() => class InnerClass {}};
```
```
var AliasClass;
let OuterClass = AliasClass = (() => class InnerClass {})();
```
```
let OuterClass = (() => {
let AdjacentClass = class InnerClass {};
// ... static properties or decorators attached to `AdjacentClass`
return AdjacentClass;
})();
```
```
var AliasClass;
let OuterClass = AliasClass = (() => {
let AdjacentClass = class InnerClass {};
// ... static properties or decorators attached to `AdjacentClass`
return AdjacentClass;
})();
```
The `Esm5ReflectionHost` already handles slightly different IIFE wrappers
around function-based classes. This can be substantially reused when
fixing `Esm2015ReflectionHost`, since there is a lot of commonality
between the two.
This commit moves code from the `Esm5ReflectionHost` into the `Esm2015ReflectionHost`
and looks to share as much as possible between the two hosts.
PR Close#36989
Previously the path to the unlocker process was being resolved by the
current file-system. In the case that this was a `MockFileSystemWindows`
on a non-Windows operating system, this resulted in an incorrect path
to the entry-point.
Now the path to the entry-point is hand-crafted to avoid being broken by
whatever FileSystem is in use.
PR Close#36989
The previous implementations of `hasBaseClass()` are almost
identical to the implementation of `getBaseClassExpression()`.
There is little benefit in duplicating this code so this refactoring
changes `hasBaseClass()` to just call `getBaseClassExpression()`.
This allows the various hosts that implement this to be simplified.
PR Close#36989
A number of overloads were added to `detectKnownDeclaration()` to
allow it to support `null` being passed through. In practice this could
easily be avoided, which allows the overloads to be removed and the
method signature and implementations to be simplified.
PR Close#36989
Previously in v9, we deprecated the pattern of undecorated base classes
that rely on Angular features. We ran a migration for this in version 9
and will run the same on in version 10 again.
To ensure that projects do not regress and start using the unsupported
pattern again, we report an error in ngtsc if such undecorated classes
are discovered.
We keep the compatibility code enabled in ngcc so that libraries
can be still be consumed, even if they have not been migrated yet.
Resolves FW-2130.
PR Close#36921
As of version 10, libraries following the APF will no longer contain
ESM5 output. Hence, tests in ngcc need to be updated as they currently
rely on the release output of `@angular/core`.
Additionally, we'd need to support in ngcc that the `module`
property of entry-points no longer necessarily refers to
`esm5` output, but instead can also target `esm2015`.
We currently achieve this by checking the path the `module`
property points to. We can do this because as per APF, the
folder name is known for the esm2015 output. Long-term for
more coverage, we want to sniff the format by looking for
known ES2015 constructs in the file `module` refers to.
PR Close#36944
In #36892 the `ModuleWithProviders` type parameter becomes required.
This exposes a bug in ngcc, where it can only handle functions that have a
specific form:
```
function forRoot() {
return { ... };
}
```
In other words, it only accepts functions that return an object literal.
In some libraries, the function instead returns a call to another function.
For example in `angular-in-memory-web-api`:
```
InMemoryWebApiModule.forFeature = function (dbCreator, options) {
return InMemoryWebApiModule_1.forRoot(dbCreator, options);
};
```
This commit changes the parsing of such functions to use the
`PartialEvaluator`, which can evaluate these more complex function
bodies.
PR Close#36948
Previously this method was implemented on the `NgccReflectionHost`,
but really it is asking too much of the host, since it actually needs to do
some static evaluation of the code to be able to support a wider range
of function shapes. Also there was only one implementation of the method
in the `Esm2015ReflectionHost` since it has no format specific code in
in.
This commit moves the whole function (and supporting helpers) into the
`ModuleWithProvidersAnalyzer`, which is the only place it was being used.
This class will be able to do further static evaluation of the function bodies
in order to support more function shapes than the host can do on its own.
The commit removes a whole set of reflection host tests but these are
already covered by the tests of the analyzer.
PR Close#36948
This optimization builds on a lot of prior work to finally make type-
checking of templates incremental.
Incrementality requires two main components:
- the ability to reuse work from a prior compilation.
- the ability to know when changes in the current program invalidate that
prior work.
Prior to this commit, on every type-checking pass the compiler would
generate new .ngtypecheck files for each original input file in the program.
1. (Build #1 main program): empty .ngtypecheck files generated for each
original input file.
2. (Build #1 type-check program): .ngtypecheck contents overridden for those
which have corresponding components that need type-checked.
3. (Build #2 main program): throw away old .ngtypecheck files and generate
new empty ones.
4. (Build #2 type-check program): same as step 2.
With this commit, the `IncrementalDriver` now tracks template type-checking
_metadata_ for each input file. The metadata contains information about
source mappings for generated type-checking code, as well as some
diagnostics which were discovered at type-check analysis time. The actual
type-checking code is stored in the TypeScript AST for type-checking files,
which is now re-used between programs as follows:
1. (Build #1 main program): empty .ngtypecheck files generated for each
original input file.
2. (Build #1 type-check program): .ngtypecheck contents overridden for those
which have corresponding components that need type-checked, and the
metadata registered in the `IncrementalDriver`.
3. (Build #2 main program): The `TypeCheckShimGenerator` now reuses _all_
.ngtypecheck `ts.SourceFile` shims from build #1's type-check program in
the construction of build #2's main program. Some of the contents of
these files might be stale (if a component's template changed, for
example), but wholesale reuse here prevents unnecessary changes in the
contents of the program at this point and makes TypeScript's job a lot
easier.
4. (Build #2 type-check program): For those input files which have not
"logically changed" (meaning components within are semantically the same
as they were before), the compiler will re-use the type-check file
metadata from build #1, and _not_ generate a new .ngtypecheck shim.
For components which have logically changed or where the previous
.ngtypecheck contents cannot otherwise be reused, code generation happens
as before.
PR Close#36211
This function needs to deduplicate the paths that are found from the
paths mappings. Previously this deduplication was not linear and also
called the expensive `relative()` function many times.
This commit, suggested by @JoostK, reduces the complexity of the deduplication
by using a tree structure built from the segments of each path.
PR Close#36881
Previously the `basePaths` were computed when the finder was instantiated.
This was a waste of effort in the case that the targeted entry-point is already
processed.
This change makes the computation of `basePaths` lazy, so that the work is
only done if they are actually needed.
Fixes#36874
PR Close#36881
In TS 3.9 the compiler will start to wrap ES2015 classes in an IIFE to help with
tree-shaking when the class has "associated" statements.
E.g.
```ts
let PlatformLocation = /** @class */ (() => {
...
class PlatformLocation {
}
...
return PlatformLocation;
})();
```
This commit updates `Esm2015ReflectionHost` to support this format.
PR Close#36884
Previously the `AsyncLocker` was configured to only wait
50x500ms before timing out. This is 25secs, which is often
less than a normal run of ngcc, so the chance of a timeout
flake was quite high.
The default is now 500x500ms, which is 250secs. If this is
too high for some projects then it can be changed via the
`ngcc.config.js` project file.
PR Close#36838
The commit adds support to the ngcc.config.js file for setting the
`retryAttempts` and `retryDelay` options for the `AsyncLocker`.
An integration test adds a new check for a timeout and actually uses the
ngcc.config.js to reduce the timeout time to prevent the test from taking
too long to complete.
PR Close#36838
Strictly this method only returns config for packages. So this commit
renames it to `getPackageConfig()`, which frees us up to add other
"getXxxxConfig()` methods later.
PR Close#36838
This test is basically duplicated (and slightly enhanced) in the
following test. So it is superfluous. (I suspect it was the result
of a broken rebase.)
PR Close#36838
When ngcc fails due to a timeout waiting for another process
to complete, it was not failing with a unique exit code, so that it
was not possible to know if the process can be restarted; compared to
ngcc failing for some more fatal reason.
Now if ngcc exits because of a timeout, the exit code will be 177.
PR Close#36838
When ngcc is having to pause and wait for another process
it provides a message to the user. This commit adds the extra
information about how to remove the lockfile if desired, since
this message is not shown if you Ctrl-C out of the process before
the timeout period ends.
PR Close#36838
Now that `ngcc/src/ngcc_options` imports `FileWriter` type, there is a
circular dependency detected by the `ts-circular-deps:check` lint check:
```
ngcc/src/ngcc_options.ts
→ ngcc/src/writing/file_writer.ts
→ ngcc/src/packages/entry_point_bundle.ts
→ ngcc/src/ngcc_options.ts
```
This commit moves the `PathMappings` type (and related helpers) to a
separate file to avoid the circular dependency.
NOTE:
The circular dependency was only with taking types into account. There
was no circular dependency for the actual (JS) code.
PR Close#36626
When running in parallel mode, worker processes forward errors thrown
during task processing to the master process, which in turn exits with
an error.
However, there are cases where the error is not directly related to
processing the entry-point. One such case is when there is not enough
memory (for example, due to all the other tasks being processed
simultaneously).
Previously, an `ENOMEM` error thrown on a worker process would propagate
to the master process, eventually causing ngcc to exit with an error.
Example failure: https://circleci.com/gh/angular/angular/682198
This commit improves handling of these low-memory situations by
detecting `ENOMEM` errors and killing the worker process, thus allowing
the master process to decide how to handle that. The master process will
put the task back into the tasks queue and continue processing tasks
with the rest of the worker processes (and thus with lower memory
pressure).
PR Close#36626
Previously, when the last worker process crashed, the master process
would try to re-spawn it indefinitely. This could lead to an infinite
loop (if for some reason the worker process kept crashing).
This commit avoids this by limiting the number of re-spawn attempts to
3, after which ngcc will exit with an error.
PR Close#36626
Previously, when running in parallel mode and a worker process crashed
while processing a task, it was not possible for ngcc to continue
without risking ending up with a corrupted entry-point and therefore it
exited with an error. This, for example, could happen when a worker
process received a `SIGKILL` signal, which was frequently observed in CI
environments. This was probably the result of Docker killing processes
due to increased memory pressure.
One factor that amplifies the problem under Docker (which is often used
in CI) is that it is not possible to distinguish between the available
CPU cores on the host machine and the ones made available to Docker
containers, thus resulting in ngcc spawning too many worker processes.
This commit addresses these issues in the following ways:
1. We take advantage of the fact that files are written to disk only
after an entry-point has been fully analyzed/compiled. The master
process can now determine whether a worker process has not yet
started writing files to disk (even if it was in the middle of
processing a task) and just put the task back into the tasks queue if
the worker process crashes.
2. The master process keeps track of the transformed files that a worker
process will attempt to write to disk. If the worker process crashes
while writing files, the master process can revert any changes and
put the task back into the tasks queue (without risking corruption).
3. When a worker process crashes while processing a task (which can be a
result of increased memory pressure or too many worker processes),
the master process will not try to re-spawn it. This way the number
or worker processes is gradually adjusted to a level that can be
accomodated by the system's resources.
Examples of ngcc being able to recover after a worker process crashed:
- While idling: https://circleci.com/gh/angular/angular/682197
- While compiling: https://circleci.com/gh/angular/angular/682209
- While writing files: https://circleci.com/gh/angular/angular/682267
Jira issue: [FW-2008](https://angular-team.atlassian.net/browse/FW-2008)
Fixes#36278
PR Close#36626
This commit adds a `revertFile()` method to `FileWriter`, which can
revert a transformed file (and its backup - if any) written by the
`FileWriter`.
In a subsequent commit, this will be used to allow ngcc to recover
when a worker process crashes in the middle of processing a task.
PR Close#36626
With this commit, the master process will keep track of the transformed
files that each worker process is intending to write to disk.
In a subsequent commit, this info will be used to allow ngcc to recover
when a worker process crashes in the middle of processing a task.
PR Close#36626
With this commit, worker processes will notify the master process about
the transformed files they are about to write to disk before starting
writing them.
In a subsequent commit, this will be used to allow ngcc to recover when
a worker process crashes in the middle of processing a task.
PR Close#36626
This commit enhances the `CompileFn`, which is used to process each
entry-point, to support running a passed-in callback (and wait for it to
complete) before proceeding with writing the transformed files to disk.
This functionality is currently not used. In a subsequent commit, it
will be used for passing info from worker processes to the master
process that will allow ngcc to recover when a worker process crashes in
the middle of processing a task.
PR Close#36626
Rename the `markTaskCompleted()` method to be consistent with the other
similar methods of `TaskQueue` (`markAsFailed()` and
`markAsUnprocessed()`).
PR Close#36626
This commit adds support for stopping processing an in-progress task
and moving it back to the list of pending tasks.
In a subsequent commit, this will be used to allow ngcc to recover when
a worker process crashes in the middle of processing a task.
PR Close#36626
Previously, ngcc would run in parallel mode (using the
`ClusterExecutor`) when there were at least 2 CPU cores (and all other
requirements where met). On systems with just 2 CPU cores, this meant
there would only be one worker process (since one CPU core is always
reserved for the master process). In these cases, the tasks would still
be processed serially (on the one worker process), but we would also pay
the overhead of communicating between the master and worker processes.
This commit fixes this by only running in parallel mode if there are
more than 2 CPU cores (i.e. at least 2 worker processes).
PR Close#36626
Previously, the "Compiling <entryPoint>" log message was printed before
starting to analyze and transform files, but after creating the
`EntryPointBundle` (which includes creating the TS program).
Since creating the `EntryPointBundle` involves some work, it is more
accurate to move the log message before creating the bundle.
PR Close#36626
An enum declaration in TypeScript code will be emitted into JavaScript
as a regular variable declaration, with the enum members being declared
inside an IIFE. For ngcc to support interpreting such variable
declarations as enum declarations with its members, ngcc needs to
recognize the enum declaration emit structure and extract all member
from the statements in the IIFE.
This commit extends the `ConcreteDeclaration` structure in the
`ReflectionHost` abstraction to be able to capture the enum members
on a variable declaration, as a substitute for the original
`ts.EnumDeclaration` as it existed in TypeScript code. The static
interpreter has been extended to handle the extracted enum members
as it would have done for `ts.EnumDeclaration`.
Fixes#35584
Resolves FW-2069
PR Close#36550
The html parser already normalizes line endings (converting `\r\n` to `\n`)
for most text in templates but it was missing the expressions of ICU expansions.
In ViewEngine backticked literal strings, used to define inline templates,
were already normalized by the TypeScript parser.
In Ivy we are parsing the raw text of the source file directly so the line
endings need to be manually normalized.
This change ensures that inline templates have the line endings of ICU
expression normalized correctly, which matches the ViewEngine.
In ViewEngine external templates, defined in HTML files, the behavior was
different, since TypeScript was not normalizing the line endings.
Specifically, ICU expansion "expressions" are not being normalized.
This is a problem because it means that i18n message ids can be different on
different machines that are setup with different line ending handling,
or if the developer moves a template from inline to external or vice versa.
The goal is always to normalize line endings, whether inline or external.
But this would be a breaking change since it would change i18n message ids
that have been previously computed. Therefore this commit aligns the ivy
template parsing to have the same "buggy" behavior for external templates.
There is now a compiler option `i18nNormalizeLineEndingsInICUs`, which
if set to `true` will ensure the correct non-buggy behavior. For the time
being this option defaults to `false` to ensure backward compatibility while
allowing opt-in to the desired behavior. This option's default will be
flipped in a future breaking change release.
Further, when this option is set to `false`, any ICU expression tokens,
which have not been normalized, are added to the `ParseResult` from the
`HtmlParser.parse()` method. In the future, this collection of tokens could
be used to diagnose and encourage developers to migrate their i18n message
ids. See FW-2106.
Closes#36725
PR Close#36741
The cached file-system was implemented to speed up ngcc
processing, but in reality most files are not accessed many times
and there is no noticeable degradation in speed by removing it.
Benchmarking `ngcc -l debug` for AIO on a local machine
gave a range of 196-236 seconds with the cache and 197-224
seconds without the cache.
Moreover, when running in parallel mode, ngcc has a separate
file cache for each process. This results in excess memory usage.
Notably the master process, which only does analysis of entry-points
holds on to up to 500Mb for AIO when using the cache compared to
only around 30Mb when not using the cache.
Finally, the file-system cache being incorrectly primed with file
contents before being processed has been the cause of a number
of bugs. For example https://github.com/angular/angular-cli/issues/16860#issuecomment-614694269.
PR Close#36687
The change in e041ac6f0d
to support sending unlocker process output to the main ngcc
console output prevents messages require that the main process
relinquishes the event-loop to allow the `stdout.on()` handler to
run. This results in none of the messages being written when ngcc
is run in `--no-async` mode, and some messages failing to be
written if the main process is killed (e.g. ctrl-C).
It appears that the problem with Windows and detached processes
is known - see https://github.com/nodejs/node/issues/3596#issuecomment-250890218.
But in the meantime, this commit is a workaround, where non-Windows
`inherit` the main process `stdout` while on Windows it reverts
to the async handler approach, which is better than nothing.
PR Close#36637
On Windows, the output of a detached process (such as the unlocker
process used by `LockFileWithChildProcess`) is not shown in the parent
process' stdout.
This commit addresses this by piping the spawned process' stdin/stdout
and manually writing to the parent process' stdout.
PR Close#36569
The current ngcc lock-file strategy spawns a new process in order to
capture a potential `SIGINT` and remove the lock-file. For more
information see #35861.
Previously, this unlocker process was spawned as soon as the `LockFile`
was instantiated in order to have it available as soon as possible
(given that spawning a process is an asynchronous operation). Since the
`LockFile` was instantiated and passed to the `Executor`, this meant
that an unlocker process was spawned for each cluster worker, when
running ngcc in parallel mode. These processes were not needed, since
the `LockFile` was not used in cluster workers, but we still had to pay
the overhead of each process' own memory and V8 instance.
(NOTE: This overhead was small compared to the memory consumed by ngcc's
normal operations, but still unnecessary.)
This commit avoids the extra processes by only spawning an unlocker
process when running on the cluster master process and not on worker
processes.
PR Close#36569
For some reason (possibly related to async/await promises)
the ngcc process is not exiting when spawned from the CLI
when there has been an error (such as when it timesout waiting
for a lockfile to become free).
Calling `process.exit()` directly fixes this.
Fixes#36616
PR Close#36622
Previously, when we needed to detect whether a file is external to a
package, we only checked whether the relative path to the file from the
package's root started with `..`. This would detect external imports
when the packages were siblings (e.g. peer dependencies or hoisted to
the top of `node_modules/` by the package manager), but would fail to
detect imports from packages located in nested `node_modules/` as
external. For example, importing `node_modules/foo/node_modules/bar`
from a file in `node_modules/foo/` would be considered internal to the
`foo` package.
This could result in processing/analyzing more files than necessary.
More importantly it could lead to errors due to trying to analyze
non-Angular packages that were direct dependencies of Angular packages.
This commit fixes it by also verifying that the relative path to a file
does not start with `node_modules/`.
Jira issue: [FW-2068](https://angular-team.atlassian.net/browse/FW-2068)
Fixes#36526
PR Close#36559
The base path for package and entry-points is known so there is
no need to store these in the file. Also this commit avoids storing
empty arrays unnecessarily.
PR Close#36486
Previously, even if an entry-point did not need to be processed,
ngcc would always parse the files of the entry-point to compute
its dependencies. This can take a lot of time for large node_modules.
Now these dependencies are cached in the entry-point manifest,
and read from there rather than computing them every time.
See https://github.com/angular/angular/issues/36414\#issuecomment-608401834
FW-2047
PR Close#36486
When the compiler needs to convert a type reference to a value
expression, it may encounter a type that refers to a namespaced symbol.
Such namespaces need to be handled specially as there's various forms
available. Consider a namespace named "ns":
1. One can refer to a namespace by itself: `ns`. A namespace is only
allowed to be used in a type position if it has been merged with a
class, but even if this is the case it may not be possible to convert
that type into a value expression depending on the import form. More
on this later (case a below)
2. One can refer to a type within the namespace: `ns.Foo`. An import
needs to be generated to `ns`, from which the `Foo` property can then
be read.
3. One can refer to a type in a nested namespace within `ns`:
`ns.Foo.Bar` and possibly even deeper nested. The value
representation is similar to case 2, but includes additional property
accesses.
The exact strategy of how to deal with these cases depends on the type
of import used. There's two flavors available:
a. A namespaced import like `import * as ns from 'ns';` that creates
a local namespace that is irrelevant to the import that needs to be
generated (as said import would be used instead of the original
import).
If the local namespace "ns" itself is referred to in a type position,
it is invalid to convert it into a value expression. Some JavaScript
libraries publish a value as default export using `export = MyClass;`
syntax, however it is illegal to refer to that value using "ns".
Consequently, such usage in a type position *must* be accompanied by
an `@Inject` decorator to provide an explicit token.
b. An explicit namespace declaration within a module, that can be
imported using a named import like `import {ns} from 'ns';` where the
"ns" module declares a namespace using `declare namespace ns {}`.
In this case, it's the namespace itself that needs to be imported,
after which any qualified references into the namespace are converted
into property accesses.
Before this change, support for namespaces in the type-to-value
conversion was limited and only worked correctly for a single qualified
name using a namespace import (case 2a). All other cases were either
producing incorrect code or would crash the compiler (case 1a).
Crashing the compiler is not desirable as it does not indicate where
the issue is. Moreover, the result of a type-to-value conversion is
irrelevant when an explicit injection token is provided using `@Inject`,
so referring to a namespace in a type position (case 1) could still be
valid.
This commit introduces logic to the type-to-value conversion to be able
to properly deal with all type references to namespaced symbols.
Fixes#36006
Resolves FW-1995
PR Close#36106
In cc4b813e75 the `getBasePaths()`
function was changed to log a warning if a `basePath()` computed from
the `paths` mappings did not exist. It turns out this is a common and
accepted scenario, so we should not log warnings in this case.
Fixes#36518
PR Close#36525
1. update jasmine to 3.5
2. update @types/jasmine to 3.5
3. update @types/jasminewd2 to 2.0.8
Also fix several cases, the new jasmine 3 will help to create test cases correctly,
such as in the `jasmine 2.x` version, the following case will pass
```
expect(1 == 2);
```
But in jsamine 3, the case will need to be
```
expect(1 == 2).toBeTrue();
```
PR Close#34625
Previously, `isRelativePath()` assumed paths are *nix-style. This caused
Windows-style paths (such as `C:\foo\some-package\some-file.js`) to not
be recognized as "relative" imports.
This commit fixes this by using the OS-agnostic `isRooted()` helper and
also accounting for both styles of path delimiters: `/` and `\`
PR Close#36372
When TypeScript downlevels ES2015+ code to ES5, it uses some helper
functions to emulate some ES2015+ features, such as spread syntax. The
TypeScript compiler can be configured to emit these helpers into the
transpiled code (which is controlled by the `noEmitHelpers` option -
false by default). It can also be configured to import these helpers
from the `tslib` module (which is controlled by the `importHelpers`
option - false by default).
While most of the time the helpers will be either emitted or imported,
it is possible that one configures their app to neither emit nor import
them. In that case, the helpers could, for example, be made available on
the global object. This is what `@nativescript/angular`
v9.0.0-next-2019-11-12-155500-01 does. See, for example, [common.js][1].
Ngcc must be able to detect and statically evaluate these helpers.
Previously, it was only able to detect emitted or imported helpers.
This commit adds support for detecting these helpers if they are neither
emitted nor imported. It does this by checking identifiers for which no
declaration (either concrete or inline) can be found against a list of
known TypeScript helper function names.
[1]: https://unpkg.com/browse/@nativescript/angular@9.0.0-next-2019-11-12-155500-01/common.js
PR Close#36418
The source-map flattening was throwing an error when there
is a cyclic dependency between source files and source-maps.
The error was either a custom one describing the cycle, or a
"Maximum call stack size exceeded" one.
Now this is handled more leniently, resulting in a partially loaded
source file (or source-map) and a warning logged.
Fixes#35727Fixes#35757
Fixes https://github.com/angular/angular-cli/issues/17106
Fixes https://github.com/angular/angular-cli/issues/17115
PR Close#36452
Recently we added support for ignoring specified deep-import
warnings by providing sets of regular expressions within the
`ngcc.config.js` file. But this was only working for the project
level configuration.
This commit fixes ngcc so that it will also read these regular
expressions from package level configuration too.
Fixes#35750
PR Close#36423
The `browser` package.json property is now supported to the same
level as `main` - i.e. it is sniffed for UMD, ESM5 and CommonJS.
The `browser` property can also contain an object with file overrides
but this is not supported by ngcc.
Fixes#36062
PR Close#36396
Previously, `main` was only checked for `umd` or `commonjs`
formats. Now if there are `import` or `export` statements in the
source file it will be deemed to be in `esm5` format.
Fixes#35788
PR Close#36396
The `NgccReflectionHost`s have logic for detecting certain known
declarations (such as `Object.assign()` and TypeScript helpers), which
allows the `PartialEvaluator` to evaluate expressions it would not be
able to statically evaluate otherwise.
In #36089, `DelegatingReflectionHost` was introduced, which delegates to
a TypeScript `ReflectionHost` when reflecting on TypeScript files, which
for ngcc's case means `.d.ts` files of dependencies. As a result, ngcc
lost the ability to detect TypeScript helpers imported from `tslib`,
because `DelegatingReflectionHost` was not able to apply the known
declaration detection logic while reflecting on `tslib`'s `.d.ts` files.
This commit fixes this by ensuring `DelegatingReflectionHost` calls the
`NgccReflectionHost`'s `detectKnownDeclaration()` method as necessary,
even when using the TypeScript `ReflectionHost`.
NOTE:
The previous commit exposed a bug in ngcc that was hidden due to the
tests' being inconsistent with how the `ReflectionHost`s are used in the
actual program. The changes in this commit are verified by ensuring the
failing tests are now passing (hence no new tests are added).
PR Close#36284
In #36089, `DelegatingReflectionHost` was introduced. Under the hood, it
delegates another `NgccReflectionHost` in order to reflect over the
program's source files, while using a different TypeScript
`ReflectionHost` to reflect over `.d.ts` files (which is how external
dependencies are represented in the program).
Previously, the `NgccReflectionHost`s were used directly in tests. This
does not exercise them in the way they are exercised in the actual
program, because (when used directly) they will also reflect on `.d.ts`
files too (instead of delegating to the TypeScript `ReflectionHost`).
This could hide bugs that would happen on the actual program.
This commit fixes this by using the `DelegatingReflectionHost` in the
various `NgccReflectionHost` tests.
NOTE:
This change will cause some of the existing tests to start failing.
These failures demonstrate pre-existing bugs in ngcc, that were hidden
due to the tests' being inconsistent with how the `ReflectionHost`s are
used in the actual program. They will be fixed in the next commit.
PR Close#36284
The `NgccReflectionHost`s have logic for detecting certain known
declarations (such as `Object.assign()` and TypeScript helpers), which
allows the `PartialEvaluator` to evaluate expressions it would not be
able to statically evaluate otherwise.
This commit moves the logic for identifying these known declarations to
dedicated methods. This is in preparation of allowing ngcc's
`DelegatingReflectionHost` (introduced in #36089) to also apply the
known declaration detection logic when reflecting on TypeScript sources.
PR Close#36284
Ngcc supports providing a project-level configuration to affect how
certain dependencies are processed and also has a built-in fallback
configuration for some unmaintained packages. Each entry in these
configurations could be scoped to specific versions of a package by
providing a version range. If no version range is provided for a
package, it defaults to `*` (with the intention of matching any
version).
Previously, the installed version of a package was tested against the
version range using the [semver][1] package's `satisfies()` function
with the default options. By default, `satisfies()` does not match
pre-releases (see [here][2] for more details on reasoning). While this
makes sense when determining what version of a dependency to install
(trying to avoid unexpected breaking changes), it is not desired in the
case of ngcc.
This commit fixes it by explicitly specifying that pre-release versions
should be matched normally.
[1]: https://www.npmjs.com/package/semver
[2]: https://github.com/npm/node-semver#prerelease-tags
PR Close#36370
Previously, a bad baseUrl or path mapping passed to an `EntryPointFinder`
could cause the original `sourceDirectory` to be superceded by a higher
directory. This could result in none of the sourceDirectory entry-points being
processed.
Now missing basePaths computed from path-mappings are discarded with
a warning. Further, if the `baseUrl` is the root directory then a warning is
given as this is most likely an error in the tsconfig.json.
Resolves#36313Resolves#36283
PR Close#36331
The previous optimizations in #35756 to the
`DirectoryWalkerEntryPointFinder` were over zealous
with regard to packages that have entry-points stored
in "container" directories in the package, where the
container directory was not an entry-point itself.
Now we will also walk such "container" folders as long
as they do not contain `.js` files, which we regard as an
indicator that the directory will not contain entry-points.
Fixes#36216
PR Close#36305
This commit simplifies the `DirectoryWalkerEntryPointFinder` inter-method
calling to make it easier to follow, and also to support controlling
walking of a directory based on its children.
PR Close#36305
Previously we only searched for package paths below the set of `basePaths`
that were computed from the `basePath` provided to ngcc and the set of
`pathMappings`.
In some scenarios, such as hoisted packages, the entry-point is not within
any of the `basePaths` identified above. For example:
```
project
packages
app
node_modules
app-lib (depends on lib1)
node_modules
lib1 (depends on lib2)
node_modules
lib2 (depends on lib3/entry-point)
lib3
entry-point
```
When CLI is compiling `app-lib` ngcc will be given
`project/packages/app/node_modules` as the `basePath.
If ngcc is asked to target `lib2`, the `targetPath` will be
`project/node_modules/lib1/node_modules/lib2`.
Since `lib2` depends upon `lib3/entry-point`, ngcc will need to compute
the package path for `project/node_modules/lib3/entry-point`.
Since `project/node_modules/lib3/entry-point` is not contained in the `basePath`
`project/packages/app/node_modules`, ngcc failed to compute the `packagePath`
correctly, instead assuming that it was the same as the entry-point path.
Now we also consider the nearest `node_modules` folder to the entry-point
path as an additional `basePath`. If one is found then we use the first
directory directly below that `node_modules` directory as the package path.
In the case of our example this extra `basePath` would be `project/node_modules`
which allows us to compute the `packagePath` of `project/node_modules/lib3`.
Fixes#35747
PR Close#36249
Previously ngcc never preserved whitespaces but this is at odds
with how the ViewEngine compiler works. In ViewEngine, library
templates are recompiled with the current application's tsconfig
settings, which meant that whitespace preservation could be set
in the application tsconfig file.
This commit allows ngcc to use the `preserveWhitespaces` setting
from tsconfig when compiling library templates. One should be aware
that this disallows different projects with different tsconfig settings
to share the same node_modules folder, with regard to whitespace
preservation. But this is already the case in the current ngcc since
this configuration is hard coded right now.
Fixes#35871
PR Close#36189
This commit augments the `FactoryDef` declaration of Angular decorated
classes to contain information about the parameter decorators used in
the constructor. If no constructor is present, or none of the parameters
have any Angular decorators, then this will be represented using the
`null` type. Otherwise, a tuple type is used where the entry at index `i`
corresponds with parameter `i`. Each tuple entry can be one of two types:
1. If the associated parameter does not have any Angular decorators,
the tuple entry will be the `null` type.
2. Otherwise, a type literal is used that may declare at least one of
the following properties:
- "attribute": if `@Attribute` is present. The injected attribute's
name is used as string literal type, or the `unknown` type if the
attribute name is not a string literal.
- "self": if `@Self` is present, always of type `true`.
- "skipSelf": if `@SkipSelf` is present, always of type `true`.
- "host": if `@Host` is present, always of type `true`.
- "optional": if `@Optional` is present, always of type `true`.
A property is only present if the corresponding decorator is used.
Note that the `@Inject` decorator is currently not included, as it's
non-trivial to properly convert the token's value expression to a
type that is valid in a declaration file.
Additionally, the `ComponentDefWithMeta` declaration that is created for
Angular components has been extended to include all selectors on
`ng-content` elements within the component's template.
This additional metadata is useful for tooling such as the Angular
Language Service, as it provides the ability to offer suggestions for
directives/components defined in libraries. At the moment, such
tooling extracts the necessary information from the _metadata.json_
manifest file as generated by ngc, however this metadata representation
is being replaced by the information emitted into the declaration files.
Resolves FW-1870
PR Close#35695
When computing the dependencies between packages which are not in
node_modules, we may need to rely upon path-mappings to find the path
to the imported entry-point.
This commit allows ngcc to use the path-mappings from a tsconfig
file to find dependencies. By default any tsconfig.json file in the directory
above the `basePath` is loaded but it is possible to use a path to a
specific file by providing the `tsConfigPath` property to mainNgcc,
or to turn off loading any tsconfig file by setting `tsConfigPath` to `null`.
At the command line this is controlled via the `--tsconfig` option.
Fixes#36119
PR Close#36180
When two entry-points overlap, ngcc may attempt to process some
files twice. Previously, when this occured ngcc would just exit with an
error preventing any other entry-points from being processed.
This commit changes ngcc so that if `errorOnFailedEntryPoint` is false, it will
simply log an error and continue to process entry-points. This is useful when
ngcc is processing the entire node_modules folder and there are some invalid
entry-points that the project doesn't actually use.
PR Close#36083
Previously, when an entry-point contained code that caused its compilation
to fail, ngcc would exit in the middle of processing, possibly leaving other
entry-points in a corrupt state.
This change adds a new `errorOnFailedEntryPoint` option to `mainNgcc` that
specifies whether ngcc should exit immediately or log an error and continue
processing other entry-points.
The default is `false` so that ngcc will not error but continue processing
as much as possible. This is useful in post-install hooks, and async CLI
integration, where we do not have as much control over which entry-points
should be processed.
The option is forced to true if the `targetEntryPointPath` is provided,
such as the sync integration with the CLI, since in that case it is targeting
an entry-point that will actually be used in the current project so we do want
ngcc to exit with an error at that point.
PR Close#36083
Later when we implement the ability to continue processing when tasks have
failed to compile, we will also need to avoid processing tasks that depend
upon the failed task.
This refactoring exposes this list of dependent tasks in a way that can be
used to skip processing of tasks that depend upon a failed task.
It also changes the blocking model of the parallel mode of operation so
that non-typings tasks are now blocked on their corresponding typings task.
Previously the non-typings tasks could be triggered to run in parallel to
the typings task, since they do not have a hard dependency on each other,
but this made it difficult to skip task correctly if the typings task failed,
since it was possible that a non-typings task was already in flight when
the typings task failed. The result of this is a small potential degradation
of performance in async parallel processing mode, in the rare cases that
there were not enough unblocked tasks to make use of all the available
workers.
PR Close#36083
Moving the definition of the `onTaskCompleted` callback into `mainNgcc()`
allows it to be configured based on options passed in there more easily.
This will be the case when we want to configure whether to log or throw
an error for tasks that failed to be processed successfully.
This commit also creates two new folders and moves the code around a bit
to make it easier to navigate the code§:
* `execution/tasks`: specific helpers such as task completion handlers
* `execution/tasks/queues`: the `TaskQueue` implementations and helpers
PR Close#36083
When ngcc is compiling an entry-point, it uses a `ReflectionHost` that
is specific to its format, e.g. ES2015, ES5, UMD or CommonJS. During the
compilation of that entry-point however, the reflector may be used to
reflect into external libraries using their declaration files.
Up until now this was achieved by letting all `ReflectionHost` classes
consider their parent class for reflector queries, thereby ending up in
the `TypeScriptReflectionHost` that is a common base class for all
reflector hosts. This approach has proven to be prone to bugs, as
failing to call into the base class would cause incompatibilities with
reading from declaration files.
The observation can be made that there's only two distinct kinds of
reflection host queries:
1. the reflector query is about code that is part of the entry-point
that is being compiled, or
2. the reflector query is for an external library that the entry-point
depends on, in which case the information is reflected
from the declaration files.
The `ReflectionHost` that was chosen for the entry-point should serve
only reflector queries for the first case, whereas a regular
`TypeScriptReflectionHost` should be used for the second case. This
avoids the problem where a format-specific `ReflectionHost` fails to
handle the second case correctly, as it isn't even considered for such
reflector queries.
This commit introduces a `ReflectionHost` that delegates to the
`TypeScriptReflectionHost` for AST nodes within declaration files,
otherwise delegating to the format-specific `ReflectionHost`.
Fixes#35078
Resolves FW-1859
PR Close#36089
The format property for ES5 bundles should be "module" or "es5"/"esm5",
but was "main" instead. The "main" property is appropriate for CommonJS
and UMD bundles, not for ES5 bundles.
PR Close#36089
Previously, calculations related to the position of and difference between
SegmentMarkers required extensive computation based around the line,
line start positions and columns of each segment.
PR Close#36027
The merging algorithm needs to find, for a given segment, what the next
segment in the source file is. This change modifies the `generatedSegment`
properties in the mappings so that they have a link directly to the following
segment.
PR Close#36027
By computing and caching the start of each line, rather than the length
of each line, we can save a lot of duplicated computation in the `segmentDiff()`
and `offsetSegment()` functions.
PR Close#36027
Previously the list of original segments that was searched for incoming
mappings did not differentiate between different original source files.
Now there is a separate array of segments to search for each of the
original source files.
PR Close#36027
The `@angular/core` package has a large number of source files
and mappings which exposed performance issues in the new source-map
flattening algorithm.
This change uses a binary search (rather than linear) when finding
matching mappings to merge. Initial measurements indicate that this
reduces processing time for `@angular/core` by about 50%.
PR Close#36027
In some scenarios it is useful for the developer to indicate
to ngcc that it should not use the entry-point manifest
file, and instead write a new one.
In the ngcc command line tool, this option is set by specfying
```
--invalidate-entry-point-manifest
```
PR Close#35931
The `DirectoryWalkerEntryPointFinder` has to traverse the
entire node_modules library everytime it executes in order to
identify the entry-points that need to be processed. This is
very time consuming (several seconds for big projects on
Windows).
This commit changes the `DirectoryWalkerEntryPointFinder` to
use the `EntryPointManifest` to store the paths to entry-points
that were found when doing this initial node_modules traversal
in a file to be reused for subsequent calls.
This dramatically speeds up ngcc processing when it has been run once
already.
PR Close#35931
The new `EntryPointManifest` class can read and write a
manifest file that contains all the paths to the entry-points
that have been found in a node_modules folder.
This can be used to speed up finding entry-points in
subsequent runs.
The manifest file stores the ngcc version and hashes of
the package lock-file and project config, since if these
change the manifest will need to be recomputed.
PR Close#35931
Currently, when running the ngcc binary directly and provide an invalid option ngcc will not error out and the user might have a hard time telling why ngcc is behaving not as expected.
With this change we now output an actionable error:
```
yarn ngcc --unknown-option
Options:
--version Show version number [boolean]
-s, --source A path (relative to the working directory)
of the `node_modules` folder to process.
[default: "./node_modules"]
-p, --properties An array of names of properties in
package.json to compile (e.g. `module` or
`es2015`)
Each of these properties should hold the
path to a bundle-format.
If provided, only the specified properties
are considered for processing.
If not provided, all the supported format
properties (e.g. fesm2015, fesm5, es2015,
esm2015, esm5, main, module) in the
package.json are considered. [array]
-t, --target A relative path (from the `source` path) to
a single entry-point to process (plus its
dependencies).
--first-only If specified then only the first matching
package.json property will be compiled.
[boolean]
--create-ivy-entry-points If specified then new `*_ivy_ngcc`
entry-points will be added to package.json
rather than modifying the ones in-place.
For this to work you need to have custom
resolution set up (e.g. in webpack) to look
for these new entry-points.
The Angular CLI does this already, so it is
safe to use this option if the project is
being built via the CLI. [boolean]
--legacy-message-ids Render `$localize` messages with legacy
format ids.
The default value is `true`. Only set this
to `false` if you do not want legacy
message ids to
be rendered. For example, if you are not
using legacy message ids in your
translation files
AND are not doing compile-time inlining of
translations, in which case the extra
message ids
would add unwanted size to the final source
bundle.
It is safe to leave this set to true if you
are doing compile-time inlining because the
extra
legacy message ids will all be stripped
during translation.
[boolean] [default: true]
--async Whether to compile asynchronously. This is
enabled by default as it allows
compilations to be parallelized.
Disabling asynchronous compilation may be
useful for debugging.
[boolean] [default: true]
-l, --loglevel The lowest severity logging message that
should be output.
[choices: "debug", "info", "warn", "error"]
--invalidate-entry-point-manifest If this is set then ngcc will not read an
entry-point manifest file from disk.
Instead it will walking the directory tree
as normal looking for entry-points, and
then write a new manifest file.
[boolean] [default: false]
--help Show help [boolean]
Unknown arguments: unknown-option, unknownOption
```
PR Close#36010
This commit adds support in the Angular monorepo and in the Angular
compiler(s) for TypeScript 3.8. All packages can now compile with
TS 3.8.
For most of the repo, only a handful few typings adjustments were needed:
* TS 3.8 has a new `CustomElementConstructor` DOM type, which enforces a
zero-argument constructor. The `NgElementConstructor` type previously
declared a required `injector` argument despite the fact that its
implementation allowed `injector` to be optional. The interface type was
updated to reflect the optionality of the argument.
* Certain error messages were changed, and expectations in tests were
updated as a result.
* tsserver (part of language server) now returns performance information in
responses, so test expectations were changed to only assert on the actual
body content of responses.
For compiler-cli and schematics (which use the TypeScript AST) a major
breaking change was the introduction of the export form:
```typescript
export * as foo from 'bar';
```
This is a `ts.NamespaceExport`, and the `exportClause` of a
`ts.ExportDeclaration` can now take this type as well as `ts.NamedExports`.
This broke a lot of places where `exportClause` was assumed to be
`ts.NamedExports`.
For the most part these breakages were in cases where it is not necessary
to handle the new `ts.NamedExports` anyway. ngtsc's design uses the
`ts.TypeChecker` APIs to understand syntax and so automatically supports the
new form of exports.
The View Engine compiler on the other hand extracts TS structures into
metadata.json files, and that format was not designed for namespaced
exports. As a result it will take a nontrivial amount of work if we want to
support such exports in View Engine. For now, these new exports are not
accounted for in metadata.json, and so using them in "folded" Angular
expressions will result in errors (probably claiming that the referenced
exported namespace doesn't exist).
Care was taken to only use TS APIs which are present in 3.7/3.6, as Angular
needs to remain compatible with these for the time being.
This commit does not update angular.io.
PR Close#35864
This version of `LockFile` creates an "unlocker" child-process that monitors
the main ngcc process and deletes the lock file if it exits unexpectedly.
This resolves the issue where the main process could not be killed by pressing
Ctrl-C at the terminal.
Fixes#35761
PR Close#35861
The previous implementation mixed up the management
of locking a piece of code (both sync and async) with the
management of writing and removing the lockFile that is
used as the flag for which process has locked the code.
This change splits these two concepts up. Apart from
avoiding the awkward base class it allows the `LockFile`
implementation to be replaced cleanly.
PR Close#35861
This reduces the time that `findEntryPoints` takes from 9701.143ms to 4177.278ms, by reducing the file operations done.
Reference: #35717
PR Close#35756
With this change we spawn workers lazily based on the amount of work that needs to be done.
Before this change we spawned the maximum of workers possible. However, in some cases there are less tasks than the max number of workers which resulted in created unnecessary workers
Reference: #35717
PR Close#35719
Source-maps in the wild could be badly formatted,
causing the source-map flattening processing to fail
unexpectedly. Rather than causing the whole of ngcc
to crash, we gracefully fallback to just returning the
generated source-map instead.
PR Close#35718
Previously when rendering flattened source-maps, it was assumed that no
mapping would come from a line that is outside the lines of the actual
source content. It turns out this is not a valid assumption.
Now the code that renders flattened source-maps will handle such
mappings, with the additional benefit that the rendered source-map
will only contain mapping lines up to the last mapping, rather than a
mapping line for every content line.
Fixes#35709
PR Close#35718
If a package has a source-map but it does not provide
the actual content of the sources, then the source-map
flattening was crashing.
Now we ignore such mappings that have no source
since we are not able to compute the merged
mapping if there is no source file.
Fixes#35709
PR Close#35718
This commit adds a new ngcc configuration, `ignorableDeepImportMatchers`
for packages. This is a list of regular expressions matching deep imports
that can be safely ignored from that package. Deep imports that are not
ignored cause a warning to be logged.
// FW-1892
Fixes#35615
PR Close#35683
The library used by ngcc to update the source files (MagicString) is able
to generate a source-map but it is not able to account for any previous
source-map that the input text is already associated with.
There have been various attempts to fix this but none have been very
successful, since it is not a trivial problem to solve.
This commit contains a novel approach that is able to load up a tree of
source-files connected by source-maps and flatten them down into a single
source-map that maps directly from the final generated file to the original
sources referenced by the intermediate source-maps.
PR Close#35132
Previously if there were two path-mapped libraries that are in
different directories but the path of one started with same string
as the path of the other, we would incorrectly return the shorter
path - e.g. `dist/my-lib` and `dist/my-lib-second`. This was because
the list of `basePaths` was searched in ascending alphabetic order and
we were using `startsWith()` to match the path.
Now the `basePaths` are searched in reverse alphabetic order so the
longer path will be matched correctly.
// FW-1873
Fixes#35536
PR Close#35592
In ES5 code, TypeScript requires certain helpers (such as
`__spreadArrays()`) to be able to support ES2015+ features. These
helpers can be either imported from `tslib` (by setting the
`importHelpers` TS compiler option to `true`) or emitted inline (by
setting the `importHelpers` and `noEmitHelpers` TS compiler options to
`false`, which is the default value for both).
Ngtsc's `StaticInterpreter` (which is also used during ngcc processing)
is able to statically evaluate some of these helpers (currently
`__assign()`, `__spread()` and `__spreadArrays()`), as long as
`ReflectionHost#getDefinitionOfFunction()` correctly detects the
declaration of the helper. For this to happen, the left-hand side of the
corresponding call expression (i.e. `__spread(...)` or
`tslib.__spread(...)`) must be evaluated as a function declaration for
`getDefinitionOfFunction()` to be called with.
In the case of imported helpers, the `tslib.__someHelper` expression was
resolved to a function declaration of the form
`export declare function __someHelper(...args: any[][]): any[];`, which
allows `getDefinitionOfFunction()` to correctly map it to a TS helper.
In contrast, in the case of emitted helpers (and regardless of the
module format: `CommonJS`, `ESNext`, `UMD`, etc.)), the `__someHelper`
identifier was resolved to a variable declaration of the form
`var __someHelper = (this && this.__someHelper) || function () { ... }`,
which upon further evaluation was categorized as a `DynamicValue`
(prohibiting further evaluation by the `getDefinitionOfFunction()`).
As a result of the above, emitted TypeScript helpers were not evaluated
in ES5 code.
---
This commit changes the detection of TS helpers to leverage the existing
`KnownFn` feature (previously only used for built-in functions).
`Esm5ReflectionHost` is changed to always return `KnownDeclaration`s for
TS helpers, both imported (`getExportsOfModule()`) as well as emitted
(`getDeclarationOfIdentifier()`).
Similar changes are made to `CommonJsReflectionHost` and
`UmdReflectionHost`.
The `KnownDeclaration`s are then mapped to `KnownFn`s in
`StaticInterpreter`, allowing it to statically evaluate call expressions
involving any kind of TS helpers.
Jira issue: https://angular-team.atlassian.net/browse/FW-1689
PR Close#35191
When statically evaluating CommonJS code it is possible to find that we
are looking for the declaration of an identifier that actually came from
a typings file (rather than a CommonJS file).
Previously, the CommonJS reflection host would always try to use a
CommonJS specific algorithm for finding identifier declarations, but
when the id is actually in a typings file this resulted in the returned
declaration being the containing file of the declaration rather than the
declaration itself.
Now the CommonJS reflection host will check to see if the file
containing the identifier is a typings file and use the appropriate
stategy.
(Note: This is the equivalent of #34356 but for CommonJS.)
PR Close#35191
In ES5 and ES2015, class identifiers may have aliases. Previously, the
`NgccReflectionHost`s recognized the following formats:
- ES5:
```js
var MyClass = (function () {
function InnerClass() {}
InnerClass_1 = InnerClass;
...
}());
```
- ES2015:
```js
let MyClass = MyClass_1 = class MyClass { ... };
```
In addition to the above, this commit adds support for recognizing an
alias outside the IIFE in ES5 classes (which was previously not
supported):
```js
var MyClass = MyClass_1 = (function () { ... }());
```
Jira issue: [FW-1869](https://angular-team.atlassian.net/browse/FW-1869)
Partially addresses #35399.
PR Close#35527
`Esm5ReflectionHost#getInnerFunctionDeclarationFromClassDeclaration()`
was already called with `ts.Declaration`, not `ts.Node`, so we can
tighten its parameter type and get rid of a redundant check.
`getIifeBody()` (called inside
`getInnerFunctionDeclarationFromClassDeclaration()`) will check whether
the given `ts.Declaration` is a `ts.VariableDeclaration`.
PR Close#35527
ngcc uses a lockfile to prevent two ngcc instances from executing at the
same time. Previously, if a lockfile was found the current process would
error and exit.
Now, when in async mode, the current process is able to wait for the previous
process to release the lockfile before continuing itself.
PR Close#35131
Support for re-exports in UMD were added in e9fb5fdb8. This commit adds
some tests for re-exports (similar to the ones used for
`CommonJsReflectionHost`).
PR Close#35312
The `TargetedEntryPointFinder` must work out what the
containing package is for each entry-point that it finds.
The logic for doing this was flawed in the case that the
package was in a path-mapped directory and not in a
node_modules folder. This meant that secondary entry-points
were incorrectly setting their own path as the package
path, rather than the primary entry-point path.
Fixes#35188
PR Close#35227
To support parallel CLI builds we instruct developers to pre-process
their node_modules via ngcc at the command line.
Despite doing this ngcc was still trying to set a lock when it was being
triggered by the CLI for packages that are not going to be processed,
since they are not compiled by Angular for instance.
This commit checks whether a target package needs to be compiled
at all before attempting to set the lock.
Fixes#35000
PR Close#35057
If ngcc gets updated to a new version then the artifacts
left in packages that were processed by the previous
version are possibly invalid.
Previously we just errored if we found packages that
had already been processed by an outdated version.
Now we automatically clean the packages that have
outdated artifacts so that they can be reprocessed
correctly with the current ngcc version.
Fixes#35082
PR Close#35079
Now `hasBeenProcessed()` will no longer throw if there
is an entry-point that has been built with an outdated
version of ngcc.
Instead it just returns `false`, which will include it in this
processing run.
This is a precursor to adding functionality that will
automatically revert outdate build artifacts.
PR Close#35079
The message now gives concrete advice to developers who
experience the error due to running multiple simultaneous builds
via webpack.
Fixes#35000
PR Close#35001
This change reverts https://github.com/angular/angular/pull/28711
NOTE: This change deletes code and creates a BROKEN SHA. If reverting this SHA needs to be reverted with the next SHA to get back into a valid state.
The change removes the fact that `NgStyle`/`NgClass` is special and colaborates with the `[style]`/`[class]` to merge its styles. By reverting to old behavior we have better backwards compatiblity since it is no longer treated special and simply overwrites the styles (same as VE)
PR Close#34616
This change moves information from instructions to declarative position:
- `ɵɵallocHostVars(vars)` => `DirectiveDef.hostVars`
- `ɵɵelementHostAttrs(attrs)` => `DirectiveDef.hostAttrs`
When merging directives it is necessary to know about `hostVars` and `hostAttrs`. Before this change the information was stored in the `hostBindings` function. This was problematic, because in order to get to the information the `hostBindings` would have to be executed. In order for `hostBindings` to be executed the directives would have to be instantiated. This means that the directive instantiation would happen before we had knowledge about the `hostAttrs` and as a result the directive could observe in the constructor that not all of the `hostAttrs` have been applied. This further complicates the runtime as we have to apply `hostAttrs` in parts over many invocations.
`ɵɵallocHostVars` was unnecessarily complicated because it would have to update the `LView` (and Blueprint) while existing directives are already executing. By moving it out of `hostBindings` function we can access it statically and we can create correct `LView` (and Blueprint) in a single pass.
This change only changes how the instructions are generated, but does not change the runtime much. (We cheat by emulating the old behavior by calling `ɵɵallocHostVars` and `ɵɵelementHostAttrs`) Subsequent change will refactor the runtime to take advantage of the static information.
PR Close#34683
In #34288, ngtsc was refactored to separate the result of the analysis
and resolve phase for more granular incremental rebuilds. In this model,
any errors in one phase transition the trait into an error state, which
prevents it from being ran through subsequent phases. The ngcc compiler
on the other hand did not adopt this strict error model, which would
cause incomplete metadata—due to errors in earlier phases—to be offered
for compilation that could result in a hard crash.
This commit updates ngcc to take advantage of ngtsc's `TraitCompiler`,
that internally manages all Ivy classes that are part of the
compilation. This effectively replaces ngcc's own `AnalyzedFile` and
`AnalyzedClass` types, together with all of the logic to drive the
`DecoratorHandler`s. All of this is now handled in the `TraitCompiler`,
benefiting from its explicit state transitions of `Trait`s so that the
ngcc crash is a thing of the past.
Fixes#34500
Resolves FW-1788
PR Close#34889
This syntax is invalid in these source files and does result in
compilation errors as the constructor parameters could not be resolved.
This hasn't been an issue until now as those errors were ignored in the
tests, but future work to introduce the Trait system of ngtsc into
ngcc will cause these errors to prevent compilation, resulting in broken
tests.
PR Close#34889
Previously, while trying to build an `NgccReflectionHost`'s
`privateDtsDeclarationMap`, `computePrivateDtsDeclarationMap()` would
try to collect exported declarations from all source files of the
program (i.e. without checking whether they were within the target
package, as happens for declarations in `.d.ts` files).
Most of the time, that would not be a problem, because external packages
would be represented as `.d.ts` files in the program. But when an
external package had no typings, the JS files would be used instead. As
a result, the `ReflectionHost` would try to (unnecessarilly) parse the
file in order to extract exported declarations, which in turn would be
harmless in most cases.
There are certain cases, though, where the `ReflectionHost` would throw
an error, because it cannot parse the external package's JS file. This
could happen, for example, in `UmdReflectionHost`, which expects the
file to contain exactly one statement. See #34544 for more details on a
real-world failure.
This commit fixes the issue by ensuring that
`computePrivateDtsDeclarationMap()` will only collect exported
declarations from files within the target package.
Jira issue: [FW-1794](https://angular-team.atlassian.net/browse/FW-1794)
Fixes#34544
PR Close#34811
Consider a library that uses a shared constant for host bindings. e.g.
```ts
export const BASE_BINDINGS= {
'[class.mat-themed]': '_isThemed',
}
----
@Directive({
host: {...BASE_BINDINGS, '(click)': '...'}
})
export class Dir1 {}
@Directive({
host: {...BASE_BINDINGS, '(click)': '...'}
})
export class Dir2 {}
```
Previously when these components were shipped as part of the
library to NPM, consumers were able to consume `Dir1` and `Dir2`.
No errors showed up.
Now with Ivy, when ngcc tries to process the library, an error
will be thrown. The error is stating that the host bindings should
be an object (which they obviously are). This happens because
TypeScript transforms the object spread to individual
`Object.assign` calls (for compatibility).
The partial evaluator used by the `@Directive` annotation handler
is unable to process this expression because there is no
integrated support for `Object.assign`. In View Engine, this was
not a problem because the `metadata.json` files from the library
were used to compute the host bindings.
Fixes#34659
PR Close#34661
Ngcc adds properties to the `package.json` files of the entry-points it
processes to mark them as processed for a format and point to the
created Ivy entry-points (in case of `--create-ivy-entry-points`). When
running ngcc in parallel mode (which is the default for the standalone
ngcc command), multiple formats can be processed simultaneously for the
same entry-point and the order of completion is not deterministic.
Previously, ngcc would append new properties at the end of the target
object in `package.json` as soon as the format processing was completed.
As a result, the order of properties in the resulting `package.json`
(when processing multiple formats for an entry-point in parallel) was
not deterministic. For tools that use file hashes for caching purposes
(such as Bazel), this lead to a high probability of cache misses.
This commit fixes the problem by ensuring that the position of
properties added to `package.json` files is deterministic and
independent of the order in which each format is processed.
Jira issue: [FW-1801](https://angular-team.atlassian.net/browse/FW-1801)
Fixes#34635
PR Close#34870
The Angular CLI will continue to call ngcc on all possible packages, even if they
have already been processed by ngcc in a postinstall script.
In a parallel build environment, this was causing ngcc to complain that it was
being run in more than one process at the same time.
This commit moves the check for whether the targeted package has been
processed outside the locked code section, since there is no issue with
multiple ngcc processes from doing this check.
PR Close#34722
Previously, it was possible for multiple instance of ngcc to be running
at the same time, but this is not supported and can cause confusing and
flakey errors at build time.
Now, only one instance of ngcc can run at a time. If a second instance
tries to execute it fails with an appropriate error message.
See https://github.com/angular/angular/issues/32431#issuecomment-571825781
PR Close#34722
Since I was learning the codebase and had a hard time understanding what was going on I've done a
bunch of changes in one commit that under normal circumstances should have been split into several
commits. Because this code is likely going to be overwritten with Misko's changes I'm not going to
spend the time with trying to split this up.
Overall I've done the following:
- I processed review feedback from #34307
- I did a bunch of renaming to make the code easier to understand
- I refactored some internal functions that were either inefficient or hard to read
- I also updated lots of type signatures to correct them and to remove many casts in the code
PR Close#34307
The major one that affects the angular repo is the removal of the bootstrap attribute in nodejs_binary, nodejs_test and jasmine_node_test in favor of using templated_args --node_options=--require=/path/to/script. The side-effect of this is that the bootstrap script does not get the require.resolve patches with explicitly loading the targets _loader.js file.
PR Close#34736