Prior to this change, animation properties were defined as element attributes, which caused errors at runtime. Now all animation-related attributes are defined as element properties.
Also as a part of this update, we start to account for bindings used in animations, which was previously missing.
PR Close#27496
Prior to this change, the number of host vars stored for directives with `hostBindings` in expando block was incorrect for inherited directives (in case both parent and child directive have `hostBindings` defined). Now if we identify that we already added a `hostBinding` into expando block, we just increase the corresponding number of host binding vars
PR Close#27392
In Angular, it used to be an accepted practice to use strings as dependency
injection tokens. E.g. {provide: 'test', useValue: 'provided'}. However,
the Ivy node injection system did not support this. The Ivy DI system
attempts to patch a Bloom bit index onto each type registered with it, and
this patch operation does not work for a string token.
This commit adds string token support to the bloom filter system by
reserving bit 0 for string tokens. This eliminates the need for each string
token to store its own Bloom bit, at the expense of slightly more expensive
lookups of string tokens.
PR Close#27383
BREAKING CHANGE:
The public API for `DebugNode` was accidentally too broad. This change removes
1. Public constructor. Since `DebugNode` is a way for Angular to communicate information
on to the developer there is no reason why the developer should ever need to
Instantiate the `DebugNode`
2. We are also removing `removeChild`, `addChild`, `insertBefore`, and `insertChildAfter`.
All of these methods are used by Angular to constructor the correct `DebugNode` tree.
There is no reason why the developer should ever be constructing a `DebugNode` tree
And these methods should have never been made public.
3. All properties have been change to `readonly` since `DebugNode` is used by Angular
to communicate to developer and there is no reason why these APIs should be writable.
While technically breaking change we don’t expect anyone to be effected by this change.
PR Close#27223
This API is part of our public api surface and needs to be monitored by the public_api_guard.
I also had to go back and mark all of the exported functions with @publicApi jsdoc tag.
PR Close#27008
This commit introduces the setClassMetadata() private function, which
adds metadata to a type in a way that can be accessed via Angular's
ReflectionCapabilities. Currently, it writes to static fields as if
the metadata being added was downleveled from decorators by tsickle.
The plan is for ngtsc to emit code which calls this function, passing
metadata on to the runtime for testing purposes. Calls to this function
would then be tree-shaken away for production bundles.
Testing strategy: proper operation of this function will be an integral
part of TestBed metadata overriding. Angular core tests will fail if this
is broken.
PR Close#26860
These tests were previously not running on CI so they have always been broken,
or got broken just recently :-(.
test(ivy): mark failing test targets with fixme-ivy-jit and fixme-ivy-local tags
PR Close#26735
We are close enough to blacklist a few test targets, rather than whitelist targets to run...
Because bazel rules can be composed of other rules that don't inherit tags automatically,
I had to explicitly mark all of our ts_library and ng_module targes with "ivy-local" and
"ivy-jit" tags so that we can create a query that excludes all fixme- tagged targets even
if those targets are composed of other targets that don't inherit this tag.
This is the updated overview of ivy related bazel tags:
- ivy-only: target that builds or runs only under ivy
- fixme-ivy-jit: target that doesn't yet build or run under ivy with --compile=jit
- fixme-ivy-local: target that doesn't yet build or run under ivy with --compile=local
- no-ivy-jit: target that is not intended to build or run under ivy with --compile=jit
- no-ivy-local: target that is not intended to build or run under ivy with --compile=local
PR Close#26471
Originally, the ivy_switch mechanism used Bazel genrules to conditionally
compile one TS file or another depending on whether ngc or ngtsc was the
selected compiler. This was done because we wanted to avoid importing
certain modules (and thus pulling them into the build) if Ivy was on or
off. This mechanism had a major drawback: ivy_switch became a bottleneck
in the import graph, as it both imports from many places in the codebase
and is imported by many modules in the codebase. This frequently resulted
in cyclic imports which caused issues both with TS and Closure compilation.
It turns out ngcc needs both code paths in the bundle to perform the switch
during its operation anyway, so import switching was later abandoned. This
means that there's no real reason why the ivy_switch mechanism needed to
operate at the Bazel level, and for the ivy_switch file to be a bottleneck.
This commit removes the Bazel-level ivy_switch mechanism, and introduces
an additional TypeScript transform in ngtsc (and the pass-through tsc
compiler used for testing JIT) to perform the same operation that ngcc
does, and flip the switch during ngtsc compilation. This allows the
ivy_switch file to be removed, and the individual switches to be located
directly next to their consumers in the codebase, greatly mitigating the
circular import issues and making the mechanism much easier to use.
As part of this commit, the tag for marking switched variables was changed
from __PRE_NGCC__ to __PRE_R3__, since it's no longer just ngcc which
flips these tags. Most variables were renamed from R3_* to SWITCH_* as well,
since they're referenced mostly in render2 code.
Test strategy: existing test coverage is more than sufficient - if this
didn't work correctly it would break the hello world and todo apps.
PR Close#26550
This commit adds an ngTemplateGuard_ngIf static method to the NgIf
directive and an ngTemplateContextGuard static method to NgFor. The
function of these two static methods is to enable type narrowing
within generated type checking code for consumers of the directives.
PR Close#26203
Previously in Ivy, metadata for directives/components/modules/etc was
carried in .d.ts files inside type information encoded on the
DirectiveDef, ComponentDef, NgModuleDef, etc types of Ivy definition
fields. This works well, but has the side effect of complicating Ivy's
runtime code as these extra generic type parameters had to be specified
as <any> throughout the codebase. *DefInternal types were introduced
previously to mitigate this issue, but that's the wrong way to solve
the problem.
This commit returns *Def types to their original form, with no metadata
attached. Instead, new *DefWithMeta types are introduced that alias the
plain definition types and add extra generic parameters. This way the
only code that needs to deal with the extra metadata parameters is the
compiler code that reads and writes them - the existence of this metadata
is transparent to the runtime, as it should be.
PR Close#26203
Various user code uses 'instanceof' to check whether a particular instance
is a TemplateRef, ElementRef, etc. Ivy needs to work with these checks.
PR Close#25775
defineComponent() and friends can return a flyweight EMPTY object for
specific fields when they contain no data. InheritDefinitionFeature
was attempting to write into these flyweight objects, which have been
protected with Object.freeze().
This commit adds detection to InheritDefinitionFeature to identify the
frozen objects.
PR Close#25755
This commit creates an API for factory functions which allows them
to be inherited from one another. To do so, it differentiates between
the factory function as a wrapper for a constructor and the factory
function in ngInjectableDefs which is determined by a default
provider.
The new form is:
factory: (t?) => new (t || SomeType)(inject(Dep1), inject(Dep2))
The 't' parameter allows for constructor inheritance. A subclass with
no declared constructor inherits its constructor from the superclass.
With the 't' parameter, a subclass can call the superclass' factory
function and use it to create an instance of the subclass.
For @Injectables with configured providers, the factory function is
of the form:
factory: (t?) => t ? constructorInject(t) : provider();
where constructorInject(t) creates an instance of 't' using the
naturally declared constructor of the type, and where provider()
creates an instance of the base type using the special declared
provider on @Injectable.
PR Close#25392