This is a major refactor of how the router previously worked. There are a couple major advantages of this refactor, and future work will be built on top of it.
First, we will no longer have multiple navigations running at the same time. Previously, a new navigation wouldn't cause the old navigation to be cancelled and cleaned up. Instead, multiple navigations could be going at once, and we imperatively checked that we were operating on the most current `router.navigationId` as we progressed through the Observable streams. This had some major faults, the biggest of which was async races where an ongoing async action could result in a redirect once the async action completed, but there was no way to guarantee there weren't also other redirects that would be queued up by other async actions. After this refactor, there's a single Observable stream that will get cleaned up each time a new navigation is requested.
Additionally, the individual pieces of routing have been pulled out into their own operators. While this was needed in order to create one continuous stream, it also will allow future improvements to the testing APIs as things such as Guards or Resolvers should now be able to be tested in much more isolation.
* Add the new `router.transitions` observable of the new `NavigationTransition` type to contain the transition information
* Update `router.navigations` to pipe off of `router.transitions`
* Re-write navigation Observable flow to a single configured stream
* Refactor `switchMap` instead of the previous `mergeMap` to ensure new navigations cause a cancellation and cleanup of already running navigations
* Wire in existing error and cancellation logic so cancellation matches previous behavior
PR Close#25740
This is a major refactor of how the router previously worked. There are a couple major advantages of this refactor, and future work will be built on top of it.
First, we will no longer have multiple navigations running at the same time. Previously, a new navigation wouldn't cause the old navigation to be cancelled and cleaned up. Instead, multiple navigations could be going at once, and we imperatively checked that we were operating on the most current `router.navigationId` as we progressed through the Observable streams. This had some major faults, the biggest of which was async races where an ongoing async action could result in a redirect once the async action completed, but there was no way to guarantee there weren't also other redirects that would be queued up by other async actions. After this refactor, there's a single Observable stream that will get cleaned up each time a new navigation is requested.
Additionally, the individual pieces of routing have been pulled out into their own operators. While this was needed in order to create one continuous stream, it also will allow future improvements to the testing APIs as things such as Guards or Resolvers should now be able to be tested in much more isolation.
* Add the new `router.transitions` observable of the new `NavigationTransition` type to contain the transition information
* Update `router.navigations` to pipe off of `router.transitions`
* Re-write navigation Observable flow to a single configured stream
* Refactor `switchMap` instead of the previous `mergeMap` to ensure new navigations cause a cancellation and cleanup of already running navigations
* Wire in existing error and cancellation logic so cancellation matches previous behavior
PR Close#25740
Currently, NavigationStart there is no way to know if an navigation was triggered imperatively or via the location change. These two use cases should be handled differently for a variety of use cases (e.g., scroll position restoration). This PR adds a navigation source field and restored navigation id (passed to navigations triggered by a URL change).
PR Close#21728
Currently, NavigationStart there is no way to know if an navigation was triggered imperatively or via the location change. These two use cases should be handled differently for a variety of use cases (e.g., scroll position restoration). This PR adds a navigation source field and restored navigation id (passed to navigations triggered by a URL change).
PR Close#21728
Previously, the router would merge path and matrix params, as well as
data/resolve, with special rules (only merging down when the route has
an empty path, or is component-less). This change adds an extra option
"paramsInheritanceStrategy" which, when set to 'always', makes child
routes unconditionally inherit params from parent routes.
Closes#20572.
* The problem was with the `fireChildActivationStart` function. It was taking a `path` param, which was an
array of `ActivatedRouteSnapshot`s. The function was being fired for each piece of the route that was being
activated. This resulted in far too many `ChildActivationStart` events being fired, and being fired on routes
that weren't actually getting activated. This change fires the event only for those routes that are actually
being activated.
fixes#18942
PR Close#19043
* Introduced with #18407, `RouteEvents` don't actually have a common constructor. Reverting here to be able to add new functionality to ChildActivation events.
PR Close#19043
The Router use the type `Params` for all of:
- position parameters,
- matrix parameters,
- query parameters.
`Params` is defined as follow `type Params = {[key: string]: any}`
Because parameters can either have single or multiple values, the type should
actually be `type Params = {[key: string]: string | string[]}`.
The client code often assumes that parameters have single values, as in the
following exemple:
```
class MyComponent {
sessionId: Observable<string>;
constructor(private route: ActivatedRoute) {}
ngOnInit() {
this.sessionId = this.route
.queryParams
.map(params => params['session_id'] || 'None');
}
}
```
The problem here is that `params['session_id']` could be `string` or `string[]`
but the error is not caught at build time because of the `any` type.
Fixing the type as describe above would break the build because `sessionId`
would becomes an `Observable<string | string[]>`.
However the client code knows if it expects a single or multiple values. By
using the new `ParamMap` interface the user code can decide when it needs a
single value (calling `ParamMap.get(): string`) or multiple values (calling
`ParamMap.getAll(): string[]`).
The above exemple should be rewritten as:
```
class MyComponent {
sessionId: Observable<string>;
constructor(private route: ActivatedRoute) {}
ngOnInit() {
this.sessionId = this.route
.queryParamMap
.map(paramMap => paramMap.get('session_id') || 'None');
}
}
```
Added APIs:
- `interface ParamMap`,
- `ActivatedRoute.paramMap: ParamMap`,
- `ActivatedRoute.queryParamMap: ParamMap`,
- `ActivatedRouteSnapshot.paramMap: ParamMap`,
- `ActivatedRouteSnapshot.queryParamMap: ParamMap`,
- `UrlSegment.parameterMap: ParamMap`
fixes#12869fixes#12889fixes#13885fixes#13870
Before this change there was a single injector tree.
Now we have 2 injector trees, one for the modules and one for the components.
This fixes lazy loading modules.
See the design docs for details:
https://docs.google.com/document/d/1OEUIwc-s69l1o97K0wBd_-Lth5BBxir1KuCRWklTlI4
BREAKING CHANGES
`ComponentFactory.create()` takes an extra optional `NgModuleRef` parameter.
No change should be required in user code as the correct module will be used
when none is provided
DEPRECATIONS
The following methods were used internally and are no more required:
- `RouterOutlet.locationFactoryResolver`
- `RouterOutlet.locationInjector`