323 lines
15 KiB
Markdown
323 lines
15 KiB
Markdown
# Security
|
||
|
||
This page describes Angular's built-in
|
||
protections against common web-application vulnerabilities and attacks such as cross-site
|
||
scripting attacks. It doesn't cover application-level security, such as authentication (_Who is
|
||
this user?_) and authorization (_What can this user do?_).
|
||
|
||
For more information about the attacks and mitigations described below, see [OWASP Guide Project](https://www.owasp.org/index.php/Category:OWASP_Guide_Project).
|
||
|
||
You can run the <live-example></live-example> in Stackblitz and download the code from there.
|
||
|
||
|
||
|
||
<h2 id='report-issues'>
|
||
Reporting vulnerabilities
|
||
</h2>
|
||
|
||
|
||
|
||
To report vulnerabilities in Angular itself, email us at [security@angular.io](mailto:security@angular.io).
|
||
|
||
For more information about how Google handles security issues, see [Google's security
|
||
philosophy](https://www.google.com/about/appsecurity/).
|
||
|
||
|
||
|
||
<h2 id='best-practices'>
|
||
Best practices
|
||
</h2>
|
||
|
||
|
||
|
||
* **Keep current with the latest Angular library releases.**
|
||
We regularly update the Angular libraries, and these updates may fix security defects discovered in
|
||
previous versions. Check the Angular [change
|
||
log](https://github.com/angular/angular/blob/master/CHANGELOG.md) for security-related updates.
|
||
|
||
* **Don't modify your copy of Angular.**
|
||
Private, customized versions of Angular tend to fall behind the current version and may not include
|
||
important security fixes and enhancements. Instead, share your Angular improvements with the
|
||
community and make a pull request.
|
||
|
||
* **Avoid Angular APIs marked in the documentation as “_Security Risk_.”**
|
||
For more information, see the [Trusting safe values](guide/security#bypass-security-apis) section of this page.
|
||
|
||
|
||
|
||
<h2 id='xss'>
|
||
Preventing cross-site scripting (XSS)
|
||
</h2>
|
||
|
||
|
||
|
||
[Cross-site scripting (XSS)](https://en.wikipedia.org/wiki/Cross-site_scripting) enables attackers
|
||
to inject malicious code into web pages. Such code can then, for example, steal user data (in
|
||
particular, login data) or perform actions to impersonate the user. This is one of the most
|
||
common attacks on the web.
|
||
|
||
To block XSS attacks, you must prevent malicious code from entering the DOM (Document Object Model). For example, if
|
||
attackers can trick you into inserting a `<script>` tag in the DOM, they can run arbitrary code on
|
||
your website. The attack isn't limited to `<script>` tags—many elements and properties in the
|
||
DOM allow code execution, for example, `<img onerror="...">` and `<a href="javascript:...">`. If
|
||
attacker-controlled data enters the DOM, expect security vulnerabilities.
|
||
|
||
### Angular’s cross-site scripting security model
|
||
|
||
To systematically block XSS bugs, Angular treats all values as untrusted by default. When a value
|
||
is inserted into the DOM from a template, via property, attribute, style, class binding, or interpolation,
|
||
Angular sanitizes and escapes untrusted values.
|
||
|
||
_Angular templates are the same as executable code_: HTML, attributes, and binding expressions
|
||
(but not the values bound) in templates are trusted to be safe. This means that applications must
|
||
prevent values that an attacker can control from ever making it into the source code of a
|
||
template. Never generate template source code by concatenating user input and templates.
|
||
To prevent these vulnerabilities, use
|
||
the [offline template compiler](guide/security#offline-template-compiler), also known as _template injection_.
|
||
|
||
### Sanitization and security contexts
|
||
|
||
_Sanitization_ is the inspection of an untrusted value, turning it into a value that's safe to insert into
|
||
the DOM. In many cases, sanitization doesn't change a value at all. Sanitization depends on context:
|
||
a value that's harmless in CSS is potentially dangerous in a URL.
|
||
|
||
Angular defines the following security contexts:
|
||
|
||
* **HTML** is used when interpreting a value as HTML, for example, when binding to `innerHtml`.
|
||
* **Style** is used when binding CSS into the `style` property.
|
||
* **URL** is used for URL properties, such as `<a href>`.
|
||
* **Resource URL** is a URL that will be loaded and executed as code, for example, in `<script src>`.
|
||
|
||
Angular sanitizes untrusted values for HTML, styles, and URLs; sanitizing resource URLs isn't
|
||
possible because they contain arbitrary code. In development mode, Angular prints a console warning
|
||
when it has to change a value during sanitization.
|
||
|
||
### Sanitization example
|
||
|
||
The following template binds the value of `htmlSnippet`, once by interpolating it into an element's
|
||
content, and once by binding it to the `innerHTML` property of an element:
|
||
|
||
|
||
<code-example path="security/src/app/inner-html-binding.component.html" header="src/app/inner-html-binding.component.html"></code-example>
|
||
|
||
|
||
|
||
Interpolated content is always escaped—the HTML isn't interpreted and the browser displays
|
||
angle brackets in the element's text content.
|
||
|
||
For the HTML to be interpreted, bind it to an HTML property such as `innerHTML`. But binding
|
||
a value that an attacker might control into `innerHTML` normally causes an XSS
|
||
vulnerability. For example, code contained in a `<script>` tag is executed:
|
||
|
||
|
||
<code-example path="security/src/app/inner-html-binding.component.ts" header="src/app/inner-html-binding.component.ts (class)" region="class"></code-example>
|
||
|
||
|
||
|
||
Angular recognizes the value as unsafe and automatically sanitizes it, which removes the `<script>`
|
||
tag but keeps safe content such as the `<b>` element.
|
||
|
||
|
||
<div class="lightbox">
|
||
<img src='generated/images/guide/security/binding-inner-html.png' alt='A screenshot showing interpolated and bound HTML values'>
|
||
</div>
|
||
|
||
|
||
### Direct use of the DOM APIs and explicit sanitization calls
|
||
|
||
The built-in browser DOM APIs don't automatically protect you from security vulnerabilities.
|
||
For example, `document`, the node available through `ElementRef`, and many third-party APIs
|
||
contain unsafe methods. In the same way, if you interact with other libraries that manipulate
|
||
the DOM, you likely won't have the same automatic sanitization as with Angular interpolations.
|
||
Avoid directly interacting with the DOM and instead use Angular templates where possible.
|
||
|
||
For cases where this is unavoidable, use the built-in Angular sanitization functions.
|
||
Sanitize untrusted values with the [DomSanitizer.sanitize](api/platform-browser/DomSanitizer#sanitize)
|
||
method and the appropriate `SecurityContext`. That function also accepts values that were
|
||
marked as trusted using the `bypassSecurityTrust`... functions, and will not sanitize them,
|
||
as [described below](#bypass-security-apis).
|
||
|
||
### Content security policy
|
||
|
||
Content Security Policy (CSP) is a defense-in-depth
|
||
technique to prevent XSS. To enable CSP, configure your web server to return an appropriate
|
||
`Content-Security-Policy` HTTP header. Read more about content security policy at the
|
||
[Web Fundamentals guide](https://developers.google.com/web/fundamentals/security/csp) on the
|
||
Google Developers website.
|
||
|
||
|
||
{@a offline-template-compiler}
|
||
|
||
|
||
### Use the offline template compiler
|
||
|
||
The offline template compiler prevents a whole class of vulnerabilities called template injection,
|
||
and greatly improves application performance. Use the offline template compiler in production
|
||
deployments; don't dynamically generate templates. Angular trusts template code, so generating
|
||
templates, in particular templates containing user data, circumvents Angular's built-in protections.
|
||
For information about dynamically constructing forms in a safe way, see the
|
||
[Dynamic Forms](guide/dynamic-form) guide page.
|
||
|
||
### Server-side XSS protection
|
||
|
||
HTML constructed on the server is vulnerable to injection attacks. Injecting template code into an
|
||
Angular application is the same as injecting executable code into the
|
||
application: it gives the attacker full control over the application. To prevent this,
|
||
use a templating language that automatically escapes values to prevent XSS vulnerabilities on
|
||
the server. Don't generate Angular templates on the server side using a templating language; doing this
|
||
carries a high risk of introducing template-injection vulnerabilities.
|
||
|
||
|
||
|
||
<h2 id='bypass-security-apis'>
|
||
Trusting safe values
|
||
</h2>
|
||
|
||
|
||
|
||
Sometimes applications genuinely need to include executable code, display an `<iframe>` from some
|
||
URL, or construct potentially dangerous URLs. To prevent automatic sanitization in any of these
|
||
situations, you can tell Angular that you inspected a value, checked how it was generated, and made
|
||
sure it will always be secure. But *be careful*. If you trust a value that might be malicious, you
|
||
are introducing a security vulnerability into your application. If in doubt, find a professional
|
||
security reviewer.
|
||
|
||
To mark a value as trusted, inject `DomSanitizer` and call one of the
|
||
following methods:
|
||
|
||
* `bypassSecurityTrustHtml`
|
||
* `bypassSecurityTrustScript`
|
||
* `bypassSecurityTrustStyle`
|
||
* `bypassSecurityTrustUrl`
|
||
* `bypassSecurityTrustResourceUrl`
|
||
|
||
Remember, whether a value is safe depends on context, so choose the right context for
|
||
your intended use of the value. Imagine that the following template needs to bind a URL to a
|
||
`javascript:alert(...)` call:
|
||
|
||
|
||
<code-example path="security/src/app/bypass-security.component.html" header="src/app/bypass-security.component.html (URL)" region="URL"></code-example>
|
||
|
||
|
||
|
||
Normally, Angular automatically sanitizes the URL, disables the dangerous code, and
|
||
in development mode, logs this action to the console. To prevent
|
||
this, mark the URL value as a trusted URL using the `bypassSecurityTrustUrl` call:
|
||
|
||
|
||
<code-example path="security/src/app/bypass-security.component.ts" header="src/app/bypass-security.component.ts (trust-url)" region="trust-url"></code-example>
|
||
|
||
|
||
|
||
<div class="lightbox">
|
||
<img src='generated/images/guide/security/bypass-security-component.png' alt='A screenshot showing an alert box created from a trusted URL'>
|
||
</div>
|
||
|
||
|
||
|
||
If you need to convert user input into a trusted value, use a
|
||
controller method. The following template allows users to enter a YouTube video ID and load the
|
||
corresponding video in an `<iframe>`. The `<iframe src>` attribute is a resource URL security
|
||
context, because an untrusted source can, for example, smuggle in file downloads that unsuspecting users
|
||
could execute. So call a method on the controller to construct a trusted video URL, which causes
|
||
Angular to allow binding into `<iframe src>`:
|
||
|
||
|
||
<code-example path="security/src/app/bypass-security.component.html" header="src/app/bypass-security.component.html (iframe)" region="iframe"></code-example>
|
||
|
||
|
||
|
||
<code-example path="security/src/app/bypass-security.component.ts" header="src/app/bypass-security.component.ts (trust-video-url)" region="trust-video-url"></code-example>
|
||
|
||
|
||
|
||
|
||
<h2 id='http'>
|
||
HTTP-level vulnerabilities
|
||
</h2>
|
||
|
||
|
||
|
||
Angular has built-in support to help prevent two common HTTP vulnerabilities, cross-site request
|
||
forgery (CSRF or XSRF) and cross-site script inclusion (XSSI). Both of these must be mitigated primarily
|
||
on the server side, but Angular provides helpers to make integration on the client side easier.
|
||
|
||
|
||
<h3 id='xsrf'>
|
||
Cross-site request forgery
|
||
</h3>
|
||
|
||
|
||
|
||
In a cross-site request forgery (CSRF or XSRF), an attacker tricks the user into visiting
|
||
a different web page (such as `evil.com`) with malignant code that secretly sends a malicious request
|
||
to the application's web server (such as `example-bank.com`).
|
||
|
||
Assume the user is logged into the application at `example-bank.com`.
|
||
The user opens an email and clicks a link to `evil.com`, which opens in a new tab.
|
||
|
||
The `evil.com` page immediately sends a malicious request to `example-bank.com`.
|
||
Perhaps it's a request to transfer money from the user's account to the attacker's account.
|
||
The browser automatically sends the `example-bank.com` cookies (including the authentication cookie) with this request.
|
||
|
||
If the `example-bank.com` server lacks XSRF protection, it can't tell the difference between a legitimate
|
||
request from the application and the forged request from `evil.com`.
|
||
|
||
To prevent this, the application must ensure that a user request originates from the real
|
||
application, not from a different site.
|
||
The server and client must cooperate to thwart this attack.
|
||
|
||
In a common anti-XSRF technique, the application server sends a randomly
|
||
generated authentication token in a cookie.
|
||
The client code reads the cookie and adds a custom request header with the token in all subsequent requests.
|
||
The server compares the received cookie value to the request header value and rejects the request if the values are missing or don't match.
|
||
|
||
This technique is effective because all browsers implement the _same origin policy_. Only code from the website
|
||
on which cookies are set can read the cookies from that site and set custom headers on requests to that site.
|
||
That means only your application can read this cookie token and set the custom header. The malicious code on `evil.com` can't.
|
||
|
||
Angular's `HttpClient` has built-in support for the client-side half of this technique. Read about it more in the [HttpClient guide](/guide/http#security-xsrf-protection).
|
||
|
||
For information about CSRF at the Open Web Application Security Project (OWASP), see
|
||
[Cross-Site Request Forgery (CSRF)](https://owasp.org/www-community/attacks/csrf) and
|
||
[Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet](https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html).
|
||
The Stanford University paper
|
||
[Robust Defenses for Cross-Site Request Forgery](https://seclab.stanford.edu/websec/csrf/csrf.pdf) is a rich source of detail.
|
||
|
||
See also Dave Smith's easy-to-understand
|
||
[talk on XSRF at AngularConnect 2016](https://www.youtube.com/watch?v=9inczw6qtpY "Cross Site Request Funkery Securing Your Angular Apps From Evil Doers").
|
||
|
||
|
||
<h3 id='xssi'>
|
||
Cross-site script inclusion (XSSI)
|
||
</h3>
|
||
|
||
|
||
|
||
Cross-site script inclusion, also known as JSON vulnerability, can allow an attacker's website to
|
||
read data from a JSON API. The attack works on older browsers by overriding native JavaScript
|
||
object constructors, and then including an API URL using a `<script>` tag.
|
||
|
||
This attack is only successful if the returned JSON is executable as JavaScript. Servers can
|
||
prevent an attack by prefixing all JSON responses to make them non-executable, by convention, using the
|
||
well-known string `")]}',\n"`.
|
||
|
||
Angular's `HttpClient` library recognizes this convention and automatically strips the string
|
||
`")]}',\n"` from all responses before further parsing.
|
||
|
||
For more information, see the XSSI section of this [Google web security blog
|
||
post](https://security.googleblog.com/2011/05/website-security-for-webmasters.html).
|
||
|
||
|
||
|
||
<h2 id='code-review'>
|
||
Auditing Angular applications
|
||
</h2>
|
||
|
||
|
||
|
||
Angular applications must follow the same security principles as regular web applications, and
|
||
must be audited as such. Angular-specific APIs that should be audited in a security review,
|
||
such as the [_bypassSecurityTrust_](guide/security#bypass-security-apis) methods, are marked in the documentation
|
||
as security sensitive.
|