angular-cn/public/translate/cn/gdd.svg

67 lines
31 KiB
XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg width="63px" height="49px" viewBox="0 0 63 49" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<!-- Generator: Sketch 40.3 (33839) - http://www.bohemiancoding.com/sketch -->
<title>logo_lockup_developer_day_horizontal_clr</title>
<desc>Created with Sketch.</desc>
<defs>
<radialGradient cx="0.890954367%" cy="2.03118334%" fx="0.890954367%" fy="2.03118334%" r="155.168561%" id="radialGradient-1">
<stop stop-color="#3E2723" stop-opacity="0.2" offset="0%"></stop>
<stop stop-color="#3E2723" stop-opacity="0.02" offset="100%"></stop>
</radialGradient>
<radialGradient cx="99.1096491%" cy="97.9688167%" fx="99.1096491%" fy="97.9688167%" r="155.168561%" id="radialGradient-2">
<stop stop-color="#BF360C" stop-opacity="0.2" offset="0%"></stop>
<stop stop-color="#BF360C" stop-opacity="0.02" offset="100%"></stop>
</radialGradient>
<radialGradient cx="45.5028044%" cy="-0.78125%" fx="45.5028044%" fy="-0.78125%" r="212.390662%" id="radialGradient-3">
<stop stop-color="#FFFFFF" stop-opacity="0.1" offset="0%"></stop>
<stop stop-color="#FFFFFF" stop-opacity="0" offset="100%"></stop>
</radialGradient>
<radialGradient cx="-83.3113094%" cy="-0.78125%" fx="-83.3113094%" fy="-0.78125%" r="212.390642%" id="radialGradient-4">
<stop stop-color="#FFFFFF" stop-opacity="0.1" offset="0%"></stop>
<stop stop-color="#FFFFFF" stop-opacity="0" offset="100%"></stop>
</radialGradient>
</defs>
<g id="Page-1" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd">
<g id="logo_lockup_developer_day_horizontal_clr" transform="translate(-1.000000, -6.000000)">
<g id="XMLID_1_">
<g id="XMLID_81_">
<g id="XMLID_85_" transform="translate(0.000000, 10.189055)">
<polygon id="XMLID_112_" fill="#DB4437" points="15.4427861 20.3781095 27.1978762 0 13.8714237 0 8.77955821 8.82703602"></polygon>
<g id="XMLID_107_" transform="translate(0.000000, 6.049751)">
<image id="XMLID_118_" opacity="0.2" x="0" y="0" width="32.4776119" height="39.800995" xlink:href=""></image>
<g id="XMLID_108_" transform="translate(2.547264, 2.547264)" fill="#4285F4">
<path d="M0.670398408,9.87189174 C-0.0111920398,11.0534464 -0.0111920398,12.5087459 0.670398408,13.6903005 L11.32416,32.159204 L24.6506125,32.159204 L6.23229453,0.230021095 L0.670398408,9.87189174 L0.670398408,9.87189174 Z" id="XMLID_117_"></path>
</g>
</g>
<path d="M3.21766209,21.9689043 C2.90436458,21.425799 2.74207204,20.824527 2.71678726,20.2189055 C2.68707343,20.9308147 2.84936597,21.6488661 3.21766209,22.2873122 L13.8714237,40.7562189 L27.1978762,40.7562189 L27.0142058,40.4378109 L13.8714237,40.4378109 L3.21766209,21.9689043 L3.21766209,21.9689043 Z" id="XMLID_106_" fill="#1A237E" opacity="0.2"></path>
<g id="XMLID_87_" transform="translate(8.597015, 0.000000)" fill="#FFFFFF" opacity="0.2">
<polygon id="XMLID_88_" points="5.27440876 0 0.182543284 8.82703602 0.273397811 8.98794985 5.27440876 0.31840796 18.4171908 0.31840796 18.6008613 0"></polygon>
</g>
<polygon id="XMLID_103_" fill="#3E2723" opacity="0.2" points="15.4427861 20.3781095 27.1978762 0 27.0142058 0 15.3528836 20.21703"></polygon>
<path d="M3.21766209,18.7873146 L8.77955821,9.14544716 L27.0142058,40.7562189 L27.1978762,40.7562189 L8.77955821,8.82703602 L3.21766209,18.4689035 C2.84936597,19.1073528 2.68707343,19.825401 2.71678726,20.5373102 C2.74207204,19.9316888 2.90436458,19.3304167 3.21766209,18.7873146 L3.21766209,18.7873146 Z" id="XMLID_102_" fill="#FFFFFF" opacity="0.2"></path>
<polygon id="XMLID_101_" fill="url(#radialGradient-1)" points="15.4427861 20.3781095 17.228835 17.2819104 8.78719682 8.84027224"></polygon>
</g>
<g id="XMLID_76_" transform="translate(31.522388, 5.094527)">
<polygon id="XMLID_83_" fill="#FFC107" points="14.4875622 25.4726368 2.73247204 45.8507463 16.0589246 45.8507463 21.15079 37.0237102"></polygon>
<g id="XMLID_93_">
<image id="XMLID_114_" opacity="0.2" x="0" y="0" width="32.4776119" height="39.800995" xlink:href=""></image>
<g id="XMLID_104_" transform="translate(2.547264, 5.094527)" fill="#0F9D58">
<path d="M24.1654225,22.2873122 C24.8470129,21.1057576 24.8470129,19.6504581 24.1654225,18.4689035 L13.5116609,0 L0.185208358,0 L18.6035264,31.9291829 L24.1654225,22.2873122 L24.1654225,22.2873122 Z" id="XMLID_113_"></path>
</g>
</g>
<path d="M26.7126862,23.881842 C27.0259837,24.4249473 27.1882762,25.0262193 27.213561,25.6318408 C27.2432748,24.9199315 27.0809823,24.2018802 26.7126862,23.563434 L16.0589246,5.09452736 L2.73247204,5.09452736 L2.91614249,5.41293532 L16.0589246,5.41293532 L26.7126862,23.881842 L26.7126862,23.881842 Z" id="XMLID_82_" fill="#FFFFFF" opacity="0.2"></path>
<polygon id="XMLID_80_" fill="#FFFFFF" opacity="0.2" points="14.4875622 25.4726368 2.73247204 45.8507463 2.91614249 45.8507463 14.5812155 25.6337099"></polygon>
<path d="M26.7126862,27.0634316 L21.15079,36.7052991 L2.91614249,5.09452736 L2.73247204,5.09452736 L21.15079,37.0237102 L26.7126862,27.3818428 C27.0809823,26.7433934 27.2432748,26.0253453 27.213561,25.313436 C27.1882762,25.9190575 27.0259837,26.5203296 26.7126862,27.0634316 L26.7126862,27.0634316 Z" id="XMLID_79_" fill="#263238" opacity="0.2"></path>
<polygon id="XMLID_78_" fill="url(#radialGradient-2)" points="14.4875622 25.4726368 12.7015132 28.5688358 21.1431514 37.010474"></polygon>
</g>
<path d="M13.8714237,10.1890547 L3.21766209,28.6579614 C2.53607164,29.839516 2.53607164,31.2948155 3.21766209,32.4763701 L13.8714237,50.9452736 L27.1978762,50.9452736 L15.4427861,30.5671642 L27.1978762,10.1890547 L13.8714237,10.1890547 L13.8714237,10.1890547 Z" id="XMLID_75_" fill="url(#radialGradient-3)"></path>
<path d="M58.2350742,28.6579614 L47.5813126,10.1890547 L34.2548601,10.1890547 L46.0099502,30.5671642 L34.2548601,50.9452736 L47.5813126,50.9452736 L58.2350742,32.476367 C58.9166679,31.2948155 58.9166679,29.8395128 58.2350742,28.6579614 L58.2350742,28.6579614 Z" id="XMLID_74_" fill="url(#radialGradient-4)"></path>
<rect id="XMLID_84_" x="2.54726368" y="0" width="56.358209" height="61.1343284"></rect>
<g id="XMLID_72_" transform="translate(34.069652, 41.711443)" fill="#BF360C" opacity="0.2">
<polygon id="XMLID_73_" points="13.5116609 8.91542289 0.368878806 8.91542289 0.185208358 9.23383085 13.5116609 9.23383085 18.6035264 0.406794826 18.6035455 0.406775721 18.5115065 0.247899701"></polygon>
</g>
</g>
</g>
</g>
</g>
</svg>