jjwt/CHANGELOG.md

52 KiB

Release Notes

0.12.5

This patch release:

  • Ensures that builders' NestedCollection changes are applied to the collection immediately as mutation methods are called, no longer requiring application developers to call .and() to 'commit' or apply a change. For example, prior to this release, the following code did not apply changes:

    JwtBuilder builder = Jwts.builder();
    builder.audience().add("an-audience"); // no .and() call
    builder.compact(); // would not keep 'an-audience'
    

    Now this code works as expected and all other NestedCollection instances like it apply changes immediately (e.g. when calling .add(value)).

    However, standard fluent builder chains are still recommended for readability when feasible, e.g.

    Jwts.builder()
        .audience().add("an-audience").and() // allows fluent chaining
        .subject("Joe")
        // etc...
        .compact()
    

    See Issue 916.

0.12.4

This patch release includes various changes listed below.

Jackson Default Parsing Behavior

This release makes two behavioral changes to JJWT's default Jackson ObjectMapper parsing settings:

  1. In the interest of having stronger standards to reject potentially malformed/malicious/accidental JSON that could have undesirable effects on an application, JJWT's default ObjectMapper is now configured to explicitly reject/fail parsing JSON (JWT headers and/or Claims) if/when that JSON contains duplicate JSON member names.

    For example, now the following JSON, if parsed, would fail (be rejected) by default:

    {
      "hello": "world",
      "thisWillFail": 42,
      "thisWillFail": "test"
    }
    

    Technically, the JWT RFCs do allow duplicate named fields as long as the last parsed member is the one used (see JWS RFC 7515, Section 4), so this is allowed. However, because JWTs often reflect security concepts, it's usually better to be defensive and reject these unexpected scenarios by default. The RFC later supports this position/preference in Section 10.12:

    Ambiguous and potentially exploitable situations
    could arise if the JSON parser used does not enforce the uniqueness
    of member names or returns an unpredictable value for duplicate
    member names.
    

    Finally, this is just a default, and the RFC does indeed allow duplicate member names if the last value is used, so applications that require duplicates to be allowed can simply configure their own ObjectMapper and use that with JJWT instead of assuming this (new) JJWT default. See Issue #877 for more.

  2. If using JJWT's support to use Jackson to parse Custom Claim Types (for example, a Claim that should be unmarshalled into a POJO), and the JSON for that POJO contained a member that is not represented in the specified class, Jackson would fail parsing by default. Because POJOs and JSON data models can sometimes be out of sync due to different class versions, the default behavior has been changed to ignore these unknown JSON members instead of failing (i.e. the ObjectMapper's DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES is now set to false) by default.

    Again, if you prefer the stricter behavior of rejecting JSON with extra or unknown properties, you can configure true on your own ObjectMapper instance and use that instance with the Jwts.parser() builder.

Additional Changes

This release also:

  • Fixes a thread-safety issue when using java.util.ServiceLoader to dynamically lookup/instantiate pluggable implementations of JJWT interfaces (e.g. JSON parsers, etc). See Issue #873 and its documented fix in PR #893.
  • Ensures Android environments and older org.json library usages can parse JSON from a JwtBuilder-provided java.io.Reader instance. Issue 882.
  • Ensures a single string aud (Audience) claim is retained (without converting it to a Set) when copying/applying a source Claims instance to a destination Claims builder. Issue 890.
  • Ensures P-256, P-384 and P-521 Elliptic Curve JWKs zero-pad their field element (x, y, and d) byte array values if necessary before Base64Url-encoding per RFC 7518, Sections 6.2.1.2, 6.2.1.3, and 6.2.2.1, respectively. Issue 901.
  • Ensures that Secret JWKs for HMAC-SHA algorithms with k sizes larger than the algorithm minimum can be parsed/used as expected. See Issue #905
  • Ensures there is an upper bound (maximum) iterations enforced for PBES2 decryption to help mitigate potential DoS attacks. Many thanks to Jingcheng Yang and Jianjun Chen from Sichuan University and Zhongguancun Lab for their work on this. See PR 911.
  • Fixes various typos in documentation and JavaDoc. Thanks to those contributing pull requests for these!

0.12.3

This patch release:

  • Upgrades the org.json dependency to 20231013 to address that library's CVE-2023-5072 vulnerability.
  • (Re-)enables empty values for custom claims, which was the behavior in <= 0.11.5. Issue 858.

0.12.2

This is a follow-up release to finalize the work in 0.12.1 that tried to fix a reflection scope problem on >= JDK 17. The 0.12.1 fix worked, but only if the importing project or application did not have its own module-info.java file.

This release removes that reflection code entirely in favor of a JJWT-native implementation, eliminating JPMS module (scope) problems on >= JDK 17. As such, --add-opens flags are no longer required to use JJWT.

The fix has been tested up through JDK 21 in a separate application environment (out of JJWT's codebase) to assert expected functionality in a 'clean room' environment in a project both with and without module-info.java usage.

0.12.1

Enabled reflective access on JDK 17+ to java.io.ByteArrayInputStream and sun.security.util.KeyUtil for jjwt-impl.jar

0.12.0

This is a big release! JJWT now fully supports Encrypted JSON Web Tokens (JWE), JSON Web Keys (JWK) and more! See the sections below enumerating all new features as well as important notes on breaking changes or backwards-incompatible changes made in preparation for the upcoming 1.0 release.

Because breaking changes are being introduced, it is strongly recommended to wait until the upcoming 1.0 release where you can address breaking changes one time only.

Those that need immediate JWE encryption and JWK key support however will likely want to upgrade now and deal with the smaller subset of breaking changes in the 1.0 release.

Simplified Starter Jar

Those upgrading to new modular JJWT versions from old single-jar versions will transparently obtain everything they need in their Maven, Gradle or Android projects.

JJWT's early releases had one and only one .jar: jjwt.jar. Later releases moved to a modular design with 'api' and 'impl' jars including 'plugin' jars for Jackson, GSON, org.json, etc. Some users upgrading from the earlier single jar to JJWT's later versions have been frustrated by being forced to learn how to configure the more modular .jars.

This release re-introduces the jjwt.jar artifact again, but this time it is simply an empty .jar with Maven metadata that will automatically transitively download the following into a project, retaining the old single-jar behavior:

  • jjwt-api.jar
  • jjwt-impl.jar
  • jjwt-jackson.jar

Naturally, developers are still encouraged to configure the modular .jars as described in JJWT's documentation for greater control and to enable their preferred JSON parser, but this stop-gap should help those unaware when upgrading.

JSON Web Encryption (JWE) Support!

This has been a long-awaited feature for JJWT, years in the making, and it is quite extensive - so many encryption algorithms and key management algorithms are defined by the JWA specification, and new API concepts had to be introduced for all of them, as well as extensive testing with RFC-defined test vectors. The wait is over!
All JWA-defined encryption algorithms and key management algorithms are fully implemented and supported and available immediately. For example:

AeadAlgorithm enc = Jwts.ENC.A256GCM;
SecretKey key = enc.key().build();
String compact = Jwts.builder().setSubject("Joe").encryptWith(key, enc).compact();

Jwe<Claims> jwe = Jwts.parser().decryptWith(key).build().parseEncryptedClaims(compact);

Many other RSA and Elliptic Curve examples are in the full README documentation.

JSON Web Key (JWK) Support!

Representing cryptographic keys - SecretKeys, RSA Public and Private Keys, Elliptic Curve Public and Private keys - as fully encoded JSON objects according to the JWK specification - is now fully implemented and supported. The new Jwks utility class exists to create JWK builders and parsers as desired. For example:

SecretKey key = Jwts.SIG.HS256.key().build();
SecretJwk jwk = Jwks.builder().forKey(key).build();
assert key.equals(jwk.toKey());

// or if receiving a JWK string:
Jwk<?> parsedJwk = Jwks.parser().build().parse(jwkString);
assert jwk.equals(parsedJwk);
assert key.equals(parsedJwk.toKey());

Many JJWT users won't need to use JWKs explicitly, but some JWA Key Management Algorithms (and lots of RFC test vectors) utilize JWKs when transmitting JWEs. As this was required by JWE, it is now implemented in full for JWE use as well as general-purpose JWK support.

JWK Thumbprint and JWK Thumbprint URI support

The JWK Thumbprint and JWK Thumbprint URI RFC specifications are now fully supported. Please see the README.md file's corresponding named sections for both for full documentation and usage examples.

JWS Unencoded Payload Option (b64) support

The JSON Web Signature (JWS) Unencoded Payload Option RFC specification is now fully supported. Please see the README.md corresponding named section for documentation and usage examples.

Better PKCS11 and Hardware Security Module (HSM) support

Previous versions of JJWT enforced that Private Keys implemented the RSAKey and ECKey interfaces to enforce key length requirements. With this release, JJWT will still perform those checks when those data types are available, but if not, as is common with keys from PKCS11 and HSM KeyStores, JJWT will still allow those Keys to be used, expecting the underlying Security Provider to enforce any key requirements. This should reduce or eliminate any custom code previously written to extend JJWT to use keys from those KeyStores or Providers.

Additionally, PKCS11/HSM tests using SoftHSMv2 are run on every build with every JWS MAC and Signature algorithm and every JWE Key algorithm to ensure continued stable support with Android and Sun PKCS11 implementations and spec-compliant Hardware Security Modules that use the PKCS11 interface (such as YubiKey, etc.)

Custom Signature Algorithms

The io.jsonwebtoken.SignatureAlgorithm enum has been deprecated in favor of new io.jsonwebtoken.security.SecureDigestAlgorithm, io.jsonwebtoken.security.MacAlgorithm, and io.jsonwebtoken.security.SignatureAlgorithm interfaces to allow custom algorithm implementations. The new nested Jwts.SIG static inner class is a registry of all standard JWS algorithms as expected, exactly like the old enum. This change was made because enums are a static concept by design and cannot support custom values: those who wanted to use custom signature algorithms could not do so until now. The new interfaces now allow anyone to plug in and support custom algorithms with JJWT as desired.

KeyBuilder and KeyPairBuilder

Because the io.jsonwebtoken.security.Keys#secretKeyFor and io.jsonwebtoken.security.Keys#keyPairFor methods accepted the now-deprecated io.jsonwebtoken.SignatureAlgorithm enum, they have also been deprecated in favor of calling new key() or keyPair() builder methods on MacAlgorithm and SignatureAlgorithm instances directly.
For example:

SecretKey key = Jwts.SIG.HS256.key().build();
KeyPair pair = Jwts.SIG.RS256.keyPair().build();

The builders allow for customization of the JCA Provider and SecureRandom during Key or KeyPair generation if desired, whereas the old enum-based static utility methods did not.

Preparation for 1.0

Now that the JWE and JWK specifications are implemented, only a few things remain for JJWT to be considered at version 1.0. We have been waiting to apply the 1.0 release version number until the entire set of JWT specifications are fully supported and we drop JDK 7 support (to allow users to use JDK 8 APIs). To that end, we have had to deprecate some concepts, or in some cases, completely break backwards compatibility to ensure the transition to 1.0 (and JDK 8 APIs) are possible. Most backwards-incompatible changes are listed in the next section below.

Backwards Compatibility Breaking Changes, Warnings and Deprecations

  • io.jsonwebtoken.Jwt's getBody() method has been deprecated in favor of a new getPayload() method to reflect correct JWT specification nomenclature/taxonomy.

  • io.jsonwebtoken.Jws's getSignature() method has been deprecated in favor of a new getDigest() method to support expected congruent behavior with Jwe instances (both have digests).

  • io.jsonwebtoken.JwtParser's parseContentJwt, parseClaimsJwt, parseContentJws, and parseClaimsJws methods have been deprecated in favor of more intuitive respective parseUnsecuredContent, parseUnsecuredClaims, parseSignedContent and parseSignedClaims methods.

  • io.jsonwebtoken.CompressionCodec is now deprecated in favor of the new io.jsonwebtoken.io.CompressionAlgorithm interface. This is to guarantee API congruence with all other JWT-identifiable algorithm IDs that can be set as a header value.

  • io.jsonwebtoken.CompressionCodecResolver has been deprecated in favor of the new JwtParserBuilder#addCompressionAlgorithms method.

Breaking Changes

  • io.jsonwebtoken.Claims and io.jsonwebtoken.Header instances are now immutable to enhance security and thread safety. Creation and mutation are supported with newly introduced ClaimsBuilder and HeaderBuilder concepts. Even though mutation methods have migrated, there are a couple that have been removed entirely:

    • io.jsonwebtoken.JwsHeader#setAlgorithm has been removed - the JwtBuilder will always set the appropriate alg header automatically based on builder state.
    • io.jsonwebtoken.Header#setCompressionAlgorithm has been removed - the JwtBuilder will always set the appropriate zip header automatically based on builder state.
  • io.jsonwebtoken.Jwts's header(Map), jwsHeader() and jwsHeader(Map) methods have been removed in favor of the new header() method that returns a HeaderBuilder to support method chaining and dynamic Header type creation. The HeaderBuilder will dynamically create a Header, JwsHeader or JweHeader automatically based on builder state.

  • Similarly, io.jsonwebtoken.Jwts's claims() static method has been changed to return a ClaimsBuilder instead of a Claims instance.

  • JWTs that do not contain JSON Claims now have a payload type of byte[] instead of String (that is, Jwt<byte[]> instead of Jwt<String>). This is because JWTs, especially when used with the cty (Content Type) header, are capable of handling any type of payload, not just Strings. The previous JJWT releases didn't account for this, and now the API accurately reflects the JWT RFC specification payload capabilities. Additionally, the name of plaintext has been changed to content in method names and JavaDoc to reflect this taxonomy. This change has impacted the following JJWT APIs:

    • The JwtBuilder's setPayload(String) method has been deprecated in favor of two new methods:

      • setContent(byte[]), and
      • setContent(byte[], String contentType)

      These new methods allow any kind of content within a JWT, not just Strings. The existing setPayload(String) method implementation has been changed to delegate to this new setContent(byte[]) method with the argument's UTF-8 bytes, for example setContent(payloadString.getBytes(StandardCharsets.UTF_8)).

    • The JwtParser's Jwt<Header, String> parsePlaintextJwt(String plaintextJwt) and Jws<String> parsePlaintextJws(String plaintextJws) methods have been changed to Jwt<Header, byte[]> parseContentJwt(String plaintextJwt) and Jws<byte[]> parseContentJws(String plaintextJws) respectively.

    • JwtHandler's onPlaintextJwt(String) and onPlaintextJws(String) methods have been changed to onContentJwt(byte[]) and onContentJws(byte[]) respectively.

    • io.jsonwebtoken.JwtHandlerAdapter has been changed to reflect the above-mentioned name and String-to-byte[] argument changes, as well adding the abstract modifier. This class was never intended to be instantiated directly, and is provided for subclassing only. The missing modifier has been added to ensure the class is used as it had always been intended.

    • io.jsonwebtoken.SigningKeyResolver's resolveSigningKey(JwsHeader, String) method has been changed to resolveSigningKey(JwsHeader, byte[]).

  • io.jsonwebtoken.JwtParser is now immutable. All mutation/modification methods (setters, etc) deprecated 4 years ago have been removed. All parser configuration requires using the JwtParserBuilder.

  • Similarly, io.jsonwebtoken.Jwts's parser() method deprecated 4 years ago has been changed to now return a JwtParserBuilder instead of a direct JwtParser instance. The previous Jwts.parserBuilder() method has been removed as it is now redundant.

  • The JwtParserBuilder no longer supports PrivateKeys for signature verification. This was an old legacy behavior scheduled for removal years ago, and that change is now complete. For various cryptographic/security reasons, asymmetric public/private key signatures should always be created with PrivateKeys and verified with PublicKeys.

  • io.jsonwebtoken.CompressionCodec implementations are no longer discoverable via java.util.ServiceLoader due to runtime performance problems with the JDK's ServiceLoader implementation per https://github.com/jwtk/jjwt/issues/648. Custom implementations should be made available to the JwtParser via the new JwtParserBuilder#addCompressionAlgorithms method.

  • Prior to this release, if there was a serialization problem when serializing the JWT Header, an IllegalStateException was thrown. If there was a problem when serializing the JWT claims, an IllegalArgumentException was thrown. This has been changed up to ensure consistency: any serialization error with either headers or claims will now throw a io.jsonwebtoken.io.SerializationException.

  • Parsing of unsecured JWTs (alg header of none) are now disabled by default as mandated by RFC 7518, Section 3.6. If you require parsing of unsecured JWTs, you must call the JwtParserBuilder#enableUnsecured() method, but note the security implications mentioned in that method's JavaDoc before doing so.

  • io.jsonwebtoken.gson.io.GsonSerializer now requires Gson instances that have a registered GsonSupplierSerializer type adapter, for example:

    new GsonBuilder()
      .registerTypeHierarchyAdapter(io.jsonwebtoken.lang.Supplier.class, GsonSupplierSerializer.INSTANCE)    
      .disableHtmlEscaping().create();
    

    This is to ensure JWKs have toString() and application log safety (do not print secure material), but still serialize to JSON correctly.

  • io.jsonwebtoken.InvalidClaimException and its two subclasses (IncorrectClaimException and MissingClaimException) were previously mutable, allowing the corresponding claim name and claim value to be set on the exception after creation. These should have always been immutable without those setters (just getters), and this was a previous implementation oversight. This release has ensured they are immutable without the setters.

0.11.5

This patch release adds additional security guards against an ECDSA bug in Java SE versions 15-15.0.6, 17-17.0.2, and 18 (CVE-2022-21449) in addition to the guards added in the JJWT 0.11.3 release. This patch allows JJWT users using those JVM versions to upgrade to JJWT 0.11.5, even if they are unable to upgrade their JVM to patched/fixed JVM version in a timely manner. Note: if your application does not use these JVM versions, you are not exposed to the JVM vulnerability.

Note that the CVE is not a bug within JJWT itself - it is a bug within the above listed JVM versions, and the JJWT 0.11.5 release adds additional precautions within JJWT in case an application team is not able to upgrade their JVM in a timely manner.

However, even with these additional JJWT security guards, the root cause of the issue is the JVM, so it strongly recommended to upgrade your JVM to version 15.0.7, 17.0.3, or 18.0.1 or later to ensure the bug does not surface elsewhere in your application code or any other third party library in your application that may not contain similar security guards.

Issues included in this patch are listed in the JJWT 0.11.5 milestone.

Credits

Thank you to Neil Madden, the security researcher that first discovered the JVM vulnerability as covered in his Psychic Signatures in Java blog post. Neil worked directly with the JJWT team to provide these additional guards, beyond what was in the JJWT 0.11.3 release, and we're grateful for his help and collaboration in reviewing our fixes and for the additional tests he provided the JJWT team.

0.11.4

This patch release:

  • Adds additional handling for rare JSON parsing exceptions and wraps them in a JwtException to allow the application to handle these conditions as JWT concerns.
  • Upgrades the jjwt-jackson module's Jackson dependency to 2.12.6.1.
  • Upgrades the jjwt-orgjson module's org.json:json dependency to 20220320.
  • Upgrades the jjwt-gson module's gson dependency to 2.9.0.
  • Upgrades the internal testing BouncyCastle version and any references in README documentation examples to 1.70.
  • Contains various documentation and typo fixes.

The patch also makes various internal project POM and build enhancements to reduce repetition and the chance for stale references, and overall create a cleaner build with less warnings. It also ensures that CI testing builds and executes on all latest OpenJDK versions from Java 7 to Java 18 (inclusive).

Issues included in this patch are listed in the JJWT 0.11.4 milestone.

0.11.3

This patch release adds security guards against an ECDSA bug in Java SE versions 15-15.0.6, 17-17.0.2, and 18 (CVE-2022-21449). Note: if your application does not use these JVM versions, you are not exposed to the JVM vulnerability.

Note that the CVE is not a bug within JJWT itself - it is a bug within the above listed JVM versions. However, even with these additional JJWT security guards, the root cause of the issue is the JVM, so it strongly recommended to upgrade your JVM to version 15.0.7, 17.0.3, or 18.0.1 or later to ensure the bug does not surface elsewhere in your application code or any other third party library in your application that may not contain similar security guards.

Issues included in this patch are listed in the JJWT 0.11.3 milestone.

Backwards Compatibility Warning

In addition to additional protections against r or s values of zero in ECDSA signatures, this release also disables by default legacy DER-encoded signatures that might be included in an ECDSA-signed JWT. (DER-encoded signatures are not supported by the JWT RFC specifications, so they are not frequently encountered.)

However, if you are using an application that needs to consume such legacy JWTs (either produced by a very early version of JJWT, or a different JWT library), you may re-enable DER-encoded ECDSA signatures by setting the io.jsonwebtoken.impl.crypto.EllipticCurveSignatureValidator.derEncodingSupported System property to the exact String value true. For example:

System.setProperty("io.jsonwebtoken.impl.crypto.EllipticCurveSignatureValidator.derEncodingSupported", "true");

BUT BE CAREFUL: DO NOT set this System property if your application may run on one of the vulnerable JVMs noted above (Java SE versions 15-15.0.6, 17-17.0.2, and 18).

You may safely set this property to a String value of true on all other versions of the JVM if you need to support these legacy JWTs, otherwise it is best to ignore (not set) the property entirely.

Credits

Thank you to Neil Madden, the security researcher that first discovered the JVM vulnerability as covered in his Psychic Signatures in Java blog post.

We'd also like to thank Toshiki Sasazaki, a member of LINE Corporation's Application Security Team as the first person to report the concern directly to the JJWT team, as well as for working with us during testing leading to our conclusions and subsequent 0.11.3 patch release.

0.11.2

This patch release:

  • Allows empty JWS bodies to support RFC 8555 and similar initiatives. Pull Request 540
  • Ensures OSGi environments can access JJWT implementation bundles (jjwt-jackson, jjwt-gson, etc) as fragments to jjwt-api bundle. Pull Request 580
  • Rejects allowedClockSkewSeconds values that would cause numeric overflow. Issue 583
  • Upgrades Jackson dependency to version 2.9.10.4 to address all known Jackson CVE vulnerabilities. Issue 585
  • Updates SecretKey algorithm name validation to allow PKCS12 KeyStore OIDs in addition to JCA Names. Issue 588
  • Enabled CI builds on JDK 14. Pull Request 590
  • Adds missing parameters type to Maps.add(), which removes an unchecked type warning. Issue 591
  • Ensures GsonDeserializer always uses UTF-8 for encoding bytes to Strings. Pull Request 592

All issues and PRs are listed in the Github JJWT 0.11.2 milestone.

0.11.1

This patch release:

  • Upgrades the jjwt-jackson module's Jackson dependency to 2.9.10.3.
  • Fixes an issue when using Java 9+ Map.of with JacksonDeserializer that resulted in an NullPointerException.
  • Fixes an issue that prevented the jjwt-gson .jar's seralizer/deserializer implementation from being detected automatically.
  • Ensures service implementations are now loaded from the context class loader, Services.class.classLoader, and the system classloader, the first classloader with a service wins, and the others are ignored. This mimics how Classes.forName() works, and how JJWT attempted to auto-discover various implementations in previous versions.
  • Fixes a minor error in the Claims#getIssuedAt JavaDoc.

0.11.0

This minor release:

  • Adds Google's Gson as a natively supported JSON parser. Installation instructions have been updated and new JJWT Gson usage guidelines have been added.

  • Updates the Jackson dependency version to 2.9.10 to address three security vulnerabilities in Jackson.

  • A new JwtParserBuilder interface has been added and is the recommended way of creating an immutable and thread-safe JwtParser instance. Mutable methods in JwtParser will be removed before v1.0. Migration to the new signatures is straightforward, for example:

    Previous Version:

     Jwts.parser()
         .requireAudience("string")
         .parse(jwtString)
    

    Current Version:

    Jwts.parserBuilder()
        .requireAudience("string")
        .build()
        .parse(jwtString)
    
  • Adds io.jsonwebtoken.lang.Maps utility class to make creation of maps fluent, as demonstrated next.

  • Adds support for custom types when deserializing with Jackson. To use configure your parser:

    Jwts.parserBuilder().deserializeJsonWith(
        new JacksonDeserializer(
            Maps.of("claimName", YourType.class).build() // <--
        )
    ).build()
    
  • Moves JSON Serializer/Deserializer implementations to a different package name.

    • io.jsonwebtoken.io.JacksonSerializer -> io.jsonwebtoken.jackson.io.JacksonSerializer
    • io.jsonwebtoken.io.JacksonDeserializer -> io.jsonwebtoken.jackson.io.JacksonDeserializer
    • io.jsonwebtoken.io.OrgJsonSerializer -> io.jsonwebtoken.orgjson.io.OrgJsonSerializer
    • io.jsonwebtoken.io.OrgJsonDeserializer -> io.jsonwebtoken.orgjson.io.OrgJsonDeserializer

    A backward compatibility modules has been created using the deprecated classifier (io.jsonwebtoken:jjwt-jackson:0.11.0:deprecated and io.jsonwebtoken:jjwt-orjson:0.11.0:deprecated), if you are compiling against these classes directly, otherwise you will be unaffected.

Backwards Compatibility Warning

Due to this package move, if you are currently using one of the above four existing (pre 0.11.0) classes with compile scope, you must either:

  1. change your code to use the newer package classes (recommended), or
  2. change your build/dependency configuration to use the deprecated dependency classifier to use the existing classes, as follows:

Maven

<dependency>
    <groupId>io.jsonwebtoken</groupId>
    <artifactId>jjwt-jackson</artifactId>
    <version>0.11.0</version>
    <classifier>deprecated</classifier>
    <scope>compile</scope>
</dependency>

Gradle

compile 'io.jsonwebtoken:jjwt-jackson:0.11.0:deprecated'

Note: that the first option is recommended since the second option will not be available starting with the 1.0 release.

0.10.8

This patch release:

  • Ensures that SignatureAlgorithms PS256, PS384, and PS512 work properly on JDK 11 and later without the need for BouncyCastle. Previous releases referenced a BouncyCastle-specific algorithm name instead of the Java Security Standard Algorithm Name of RSASSA-PSS. This release ensures the standard name is used moving forward.

  • Fixes a backwards-compatibility bug when parsing compressed JWTs created from 0.10.6 or earlier using the DEFLATE compression algorithm.

0.10.7

This patch release:

  • Adds a new Community section in the documentation discussing asking questions, using Slack and Gittr, and opening new issues and pull requests.
  • Fixes a memory leak found in the DEFLATE compression codec implementation.
  • Updates the Jackson dependency version to 2.9.9.1 to address three security vulnerabilities in Jackson: CVE-2019-12086, CVE-2019-12384, and CVE-2019-12814.
  • Fixes a bug when Jackson is in the classpath but the jjwt-jackson .jar is not.
  • Fixes various documentation and typo fixes.

0.10.6

This patch release updates the jackson-databind version to 2.9.8 to address a critical security vulnerability in that library.

0.10.5

This patch release fixed an Android org.json library compatibility issue.

0.10.4

This patch release fixed an outstanding issue with JCA name case-sensitivity that impacted Android that was not caught in the 0.10.3 release.

0.10.3

This is a minor patch release that fixed a key length assertion for SignatureAlgorithm.forSigningKey that was failing in Android environments. The Android dependencies and ProGuard exclusions documentation was updated as well to reflect Android Studio 3.0 conventions.

0.10.2

This is a minor patch release that ensures the OrgJsonSerializer and OrgJsonDeserializer implementations are compatible with Android's older org.json API. Previously JJWT used newer org.json APIs that are not available on Android.

0.10.1

This is a minor point release that ensures the BouncyCastle dependency is optional and not pulled in as a transitive dependency into projects.

Internal implementation code (not impacting the JJWT API) and documentation was also updated to reflect that all Elliptic Curve algorithms are standard on the JDK and do not require Bouncy Castle.

Bouncy Castle is only needed when using PS256, PS384, and PS512 signature algorithms on < JDK 11. JDK 11 and later supports these algorithms natively.

0.10.0

This is a fairly large feature enhancement release that enables the following:

BACKWARDS-COMPATIBILITY NOTICE:

JJWT's new modular design utilizes distinctions between compile and runtime dependencies to ensure you only depend on the public APIs that are safe to use in your application. All internal/private implementation classes have been moved to a new jjwt-impl runtime dependency.

If you depended on any internal implementation classes in the past, you have two choices:

  1. Refactor your code to use the public-only API classes and interfaces in the jjwt-api .jar. Any functionality you might have used in the internal implementation should be available via newer cleaner interfaces and helper classes in that .jar.

  2. Specify the new jjwt-impl .jar not as a runtime dependency but as a compile dependency. This would make your upgrade to JJWT 0.10.0 fully backwards compatible, but you do so at your own risk. JJWT will make NO semantic version compatibility guarantees in the jjwt-impl .jar moving forward. Semantic versioning will be very carefully adhered to in all other JJWT dependencies however.

0.9.1

This is a minor patch release that updates the Jackson dependency to 2.9.6 to address Jackson CVE-2017-17485.

0.9.0

This is a minor release that includes changes to dependencies and plugins to allow for building jjwt with Java 9. Javadocs in a few classes were updated as well to support proper linting in both Java 8 and Java 9.

0.8.0

This is a minor feature enhancement, dependency version update and build update release. We switched from Jacoco to OpenClover as OpenClover delivers a higher quality of test metrics. As an interim measure, we introduced a new repository that has an updated version of the coveralls-maven-plugin which includes support for Clover reporting to Coveralls. Once this change has been merged and released to the official coveralls-maven-plugin on maven central, this repository will be removed. The following dependencies were updated to the latest release version: maven compiler, maven enforcer, maven failsafe, maven release, maven scm provider, maven bundle, maven gpg, maven source, maven javadoc, jackson, bouncy castle, groovy, logback and powermock. Of significance, is the upgrade for jackson as a security issue was addressed in its latest release.

An addClaims method is added to the JwtBuilder interface in this release. It adds all given name/value pairs to the JSON Claims in the payload.

Additional tests were added to improve overall test coverage.

0.7.0

This is a minor feature enhancement and bugfix release. One of the bug fixes is particularly important if using elliptic curve signatures, please see below.

Elliptic Curve Signature Length Bug Fix

Previous versions of JJWT safely calculated and verified Elliptic Curve signatures (no security risks), however, the signatures were encoded using the JVM's default ASN.1/DER format. The JWS specification however requires EC signatures to be in a R + S format. JJWT >= 0.7.0 now correctly represents newly computed EC signatures in this spec-compliant format.

What does this mean for you?

Signatures created from previous JJWT versions can still be verified, so your existing tokens will still be parsed correctly. HOWEVER, new JWTs with EC signatures created by JJWT >= 0.7.0 are now spec compliant and therefore can only be verified by JJWT >= 0.7.0 (or any other spec compliant library).

This means that if you generate JWTs using Elliptic Curve Signatures after upgrading to JJWT >= 0.7.0, you must also upgrade any applications that parse these JWTs to upgrade to JJWT >= 0.7.0 as well.

Clock Skew Support

When parsing a JWT, you might find that exp or nbf claims fail because the clock on the parsing machine is not perfectly in sync with the clock on the machine that created the JWT. You can now account for these differences (usually no more than a few minutes) when parsing using the new setAllowedClockSkewSeconds method on the parser. For example:

long seconds = 3 * 60; //3 minutes
Jwts.parser().setAllowedClockSkewSeconds(seconds).setSigningKey(key).parseClaimsJws(jwt);

This ensures that clock differences between machines can be ignored. Two or three minutes should be more than enough; it would be very strange if a machine's clock was more than 5 minutes difference from most atomic clocks around the world.

Custom Clock Support

Timestamps created during parsing can now be obtained via a custom time source via an implementation of the new io.jsonwebtoken.Clock interface. The default implementation simply returns new Date() to reflect the time when parsing occurs, as most would expect. However, supplying your own clock could be useful, especially during test cases to guarantee deterministic behavior.

Android RSA Private Key Support

Previous versions of JJWT required RSA private keys to implement java.security.interfaces.RSAPrivateKey, but Android 6 RSA private keys do not implement this interface. JJWT now asserts that RSA keys are instances of both java.security.interfaces.RSAKey and java.security.PrivateKey which should work fine on both Android and all other 'standard' JVMs as well.

Library version updates

The few dependencies JWWT has (e.g. Jackson) have been updated to their latest stable versions at the time of release.

Issue List

For all completed issues, please see the 0.7.0 Milestone List

0.6.0

Enforce JWT Claims when Parsing

You can now enforce that JWT claims have expected values when parsing a compact JWT string.

For example, let's say that you require that the JWT you are parsing has a specific sub (subject) value, otherwise you may not trust the token. You can do that by using one of the require methods on the parser builder:

try {
    Jwts.parser().requireSubject("jsmith").setSigningKey(key).parseClaimsJws(s);
} catch(InvalidClaimException ice) {
    // the sub claim was missing or did not have a 'jsmith' value
}

If it is important to react to a missing vs an incorrect value, instead of catching InvalidClaimException, you can catch either MissingClaimException or IncorrectClaimException:

try {
    Jwts.parser().requireSubject("jsmith").setSigningKey(key).parseClaimsJws(s);
} catch(MissingClaimException mce) {
    // the parsed JWT did not have the sub claim
} catch(IncorrectClaimException ice) {
    // the parsed JWT had a sub claim, but its value was not equal to 'jsmith'
}

You can also require custom claims by using the require(claimName, requiredValue) method - for example:

try {
    Jwts.parser().require("myClaim", "myRequiredValue").setSigningKey(key).parseClaimsJws(s);
} catch(InvalidClaimException ice) {
    // the 'myClaim' claim was missing or did not have a 'myRequiredValue' value
}

(or, again, you could catch either MissingClaimException or IncorrectClaimException instead)

Body Compression

This feature is NOT JWT specification compliant, but it can be very useful when you parse your own tokens.

If your JWT body is large and you have size restrictions (for example, if embedding a JWT in a URL and the URL must be under a certain length for legacy browsers or mail user agents), you may now compress the JWT body using a CompressionCodec:

Jwts.builder().claim("foo", "someReallyLongDataString...")
    .compressWith(CompressionCodecs.DEFLATE) // or CompressionCodecs.GZIP
    .signWith(SignatureAlgorithm.HS256, key)
    .compact();

This will set a new zip header with the name of the compression algorithm used so that parsers can see that value and decompress accordingly.

The default parser implementation will automatically decompress DEFLATE or GZIP compressed bodies, so you don't need to set anything on the parser - it looks like normal:

Jwts.parser().setSigningKey(key).parseClaimsJws(compact);
Custom Compression Algorithms

If the DEFLATE or GZIP algorithms are not sufficient for your needs, you can specify your own Compression algorithms by implementing the CompressionCodec interface and setting it on the parser:

Jwts.builder().claim("foo", "someReallyLongDataString...")
    .compressWith(new MyCompressionCodec())
    .signWith(SignatureAlgorithm.HS256, key)
    .compact();

You will then need to specify a CompressionCodecResolver on the parser, so you can inspect the zip header and return your custom codec when discovered:

Jwts.parser().setSigningKey(key)
    .setCompressionCodecResolver(new MyCustomCompressionCodecResolver())
    .parseClaimsJws(compact);

NOTE: Because body compression is not JWT specification compliant, you should only enable compression if both your JWT builder and parser are JJWT versions >= 0.6.0, or if you're using another library that implements the exact same functionality. This feature is best reserved for your own use cases - where you both create and later parse the tokens. It will likely cause problems if you compressed a token and expected a 3rd party (who doesn't use JJWT) to parse the token.

0.5.1

  • Minor bug fix release that ensures correct Base64 padding in Android runtimes.

0.5

  • Android support! Android's built-in Base64 codec will be used if JJWT detects it is running in an Android environment. Other than Base64, all other parts of JJWT were already Android-compliant. Now it is fully compliant.

  • Elliptic Curve signature algorithms! SignatureAlgorithm.ES256, ES384 and ES512 are now supported.

  • Super convenient key generation methods, so you don't have to worry how to do this safely:

    • MacProvider.generateKey(); //or generateKey(SignatureAlgorithm)
    • RsaProvider.generateKeyPair(); //or generateKeyPair(sizeInBits)
    • EllipticCurveProvider.generateKeyPair(); //or generateKeyPair(SignatureAlgorithm)

    The generate* methods that accept an SignatureAlgorithm argument know to generate a key of sufficient strength that reflects the specified algorithm strength.

Please see the full 0.5 closed issues list for more information.

0.4

  • Issue 8: Add ability to find signing key by inspecting the JWS values before verifying the signature.

This is a handy little feature. If you need to parse a signed JWT (a JWS) and you don't know which signing key was used to sign it, you can now use the new SigningKeyResolver concept.

A SigningKeyresolver can inspect the JWS header and body (Claims or String) before the JWS signature is verified. By inspecting the data, you can find the key and return it, and the parser will use the returned key to validate the signature. For example:

SigningKeyResolver resolver = new MySigningKeyResolver();

Jws<Claims> jws = Jwts.parser().setSigningKeyResolver(resolver).parseClaimsJws(compact);

The signature is still validated, and the JWT instance will still not be returned if the jwt string is invalid, as expected. You just get to 'see' the JWT data for key discovery before the parser validates. Nice.

This of course requires that you put some sort of information in the JWS when you create it so that your SigningKeyResolver implementation can look at it later and look up the key. The standard way to do this is to use the JWS kid ('key id') header parameter, for example:

Jwts.builder().setHeaderParam("kid", your_signing_key_id_NOT_THE_SECRET).build();

You could of course set any other header parameter or claims instead of setting kid if you want - that's just the default parameter reserved for signing key identification. If you can locate the signing key based on other information in the header or claims, you don't need to set the kid parameter - just make sure your resolver implementation knows how to look up the key.

Finally, a nice SigningKeyResolverAdapter is provided to allow you to write quick and simple subclasses or anonymous classes instead of having to implement the SigningKeyResolver interface directly. For example:

Jws<Claims> jws = Jwts.parser().setSigningKeyResolver(new SigningKeyResolverAdapter() {
        @Override
        public byte[] resolveSigningKeyBytes(JwsHeader header, Claims claims) {
            //inspect the header or claims, lookup and return the signing key
            String keyId = header.getKeyId(); //or any other parameter that you need to inspect
            return getSigningKey(keyId); //implement me
        }})
    .parseClaimsJws(compact);

0.3

  • Issue 6: Parsing an expired Claims JWT or JWS (as determined by the exp claim) will now throw an ExpiredJwtException.
  • Issue 7: Parsing a premature Claims JWT or JWS (as determined by the nbf claim) will now throw a PrematureJwtException.

0.2

More convenient Claims building

This release adds convenience methods to the JwtBuilder interface so you can set claims directly on the builder without having to create a separate Claims instance/builder, reducing the amount of code you have to write. For example, this:

Claims claims = Jwts.claims().setSubject("Joe");

String compactJwt = Jwts.builder().setClaims(claims).signWith(HS256, key).compact();

can now be written as:

String compactJwt = Jwts.builder().setSubject("Joe").signWith(HS256, key).compact();

A Claims instance based on the specified claims will be created and set as the JWT's payload automatically.

Type-safe handling for JWT and JWS with generics

The following < 0.2 code produced a JWT as expected:

Jwt jwt = Jwts.parser().setSigningKey(key).parse(compact);

But you couldn't easily determine if the jwt was a JWT or JWS instance or if the body was a Claims instance or a plaintext String without resorting to a bunch of yucky instanceof checks. In 0.2, we introduce the JwtHandler when you don't know the exact format of the compact JWT string ahead of time, and parsing convenience methods when you do.

JwtHandler

If you do not know the format of the compact JWT string at the time you try to parse it, you can determine what type it is after parsing by providing a JwtHandler instance to the JwtParser with the new parse(String compactJwt, JwtHandler handler) method. For example:

T returnVal = Jwts.parser().setSigningKey(key).parse(compact, new JwtHandler<T>() {
    @Override
    public T onPlaintextJwt(Jwt<Header, String> jwt) {
        //the JWT parsed was an unsigned plaintext JWT
        //inspect it, then return an instance of T (see returnVal above)
    }

    @Override
    public T onClaimsJwt(Jwt<Header, Claims> jwt) {
        //the JWT parsed was an unsigned Claims JWT
        //inspect it, then return an instance of T (see returnVal above)
    }

    @Override
    public T onPlaintextJws(Jws<String> jws) {
        //the JWT parsed was a signed plaintext JWS
        //inspect it, then return an instance of T (see returnVal above)
    }

    @Override
    public T onClaimsJws(Jws<Claims> jws) {
        //the JWT parsed was a signed Claims JWS
        //inspect it, then return an instance of T (see returnVal above)
    }
});

Of course, if you know you'll only have to parse a subset of the above, you can use the JwtHandlerAdapter and implement only the methods you need. For example:

T returnVal = Jwts.parser().setSigningKey(key).parse(plaintextJwt, new JwtHandlerAdapter<Jwt<Header, T>>() {
    @Override
    public T onPlaintextJws(Jws<String> jws) {
        //the JWT parsed was a signed plaintext JWS
        //inspect it, then return an instance of T (see returnVal above)
    }

    @Override
    public T onClaimsJws(Jws<Claims> jws) {
        //the JWT parsed was a signed Claims JWS
        //inspect it, then return an instance of T (see returnVal above)
    }
});
Known Type convenience parse methods

If, unlike above, you are confident of the compact string format and know which type of JWT or JWS it will produce, you can just use one of the 4 new convenience parsing methods to get exactly the type of JWT or JWS you know exists. For example:


//for a known plaintext jwt string:
Jwt<Header,String> jwt = Jwts.parser().parsePlaintextJwt(compact);

//for a known Claims JWT string:
Jwt<Header,Claims> jwt = Jwts.parser().parseClaimsJwt(compact);

//for a known signed plaintext JWT (aka a plaintext JWS):
Jws<String> jws = Jwts.parser().setSigningKey(key).parsePlaintextJws(compact);

//for a known signed Claims JWT (aka a Claims JWS):
Jws<Claims> jws = Jwts.parser().setSigningKey(key).parseClaimsJws(compact);