chore(ts/cache): add glossary (#2098)
This commit is contained in:
parent
b772079bc9
commit
a771a6e0d0
|
@ -0,0 +1,700 @@
|
|||
include _util-fns
|
||||
|
||||
// #docregion intro
|
||||
:marked
|
||||
# Angular 2 Glossary
|
||||
|
||||
Angular 2 has a vocabulary of its own.
|
||||
Most Angular 2 terms are everyday English words
|
||||
with a specific meaning within the Angular system.
|
||||
|
||||
We have gathered here the most prominent terms
|
||||
and a few less familiar ones that have unusual or
|
||||
unexpected definitions.
|
||||
|
||||
[A](#A) [B](#B) [C](#C) [D](#D) [E](#E) [F](#F) [G](#G) [H](#H) [I](#I)
|
||||
[J](#J) [K](#K) [L](#L) [M](#M) [N](#N) [O](#O) [P](#P) [Q](#Q) [R](#R)
|
||||
[S](#S) [T](#T) [U](#U) [V](#V) [W](#W) [X](#X) [Y](#Y) [Z](#Z)
|
||||
// #enddocregion intro
|
||||
|
||||
// #docregion a1
|
||||
<a id="A"></a>
|
||||
// #enddocregion a1
|
||||
.l-main-section
|
||||
:marked
|
||||
## Annotation
|
||||
.l-sub-section
|
||||
:marked
|
||||
In practice a synonym for [Decoration](#decorator).
|
||||
// #enddocregion a-1
|
||||
// #docregion a-2
|
||||
:marked
|
||||
## Attribute Directive
|
||||
.l-sub-section
|
||||
:marked
|
||||
A category of [Directive](#directive) that can listen to and modify the behavior of
|
||||
other HTML elements, attributes, properties, and components. They are usually represented
|
||||
as HTML attributes, hence the name.
|
||||
|
||||
The `ngClass` directive for adding and removing CSS class names is a good example of
|
||||
an Attribute Directive.
|
||||
// #enddocregion a-2
|
||||
|
||||
// #docregion b-c
|
||||
- var lang = current.path[1]
|
||||
- var decorator = lang === 'dart' ? 'annotation' : '<a href="#decorator">decorator</a>'
|
||||
- var atSym = lang === 'js' ? '' : '@'
|
||||
<a id="B"></a>
|
||||
.l-main-section
|
||||
:marked
|
||||
## Barrel
|
||||
.l-sub-section
|
||||
:marked
|
||||
A barrel is a way to *rollup exports* from several modules into a single convenience module.
|
||||
The barrel itself is a module file that re-exports *selected* exports of other modules.
|
||||
|
||||
Imagine three modules in a `heroes` folder:
|
||||
code-example.
|
||||
// heroes/hero.component.ts
|
||||
export class HeroComponent {}
|
||||
|
||||
// heroes/hero.model.ts
|
||||
export class Hero {}
|
||||
|
||||
// heroes/hero.service.ts
|
||||
export class HeroService {}
|
||||
:marked
|
||||
Without a barrel, a consumer would need three import statements:
|
||||
code-example.
|
||||
import { HeroComponent } from '../heroes/hero.component.ts';
|
||||
import { Hero } from '../heroes/hero.model.ts';
|
||||
import { HeroService } from '../heroes/hero.service.ts';
|
||||
:marked
|
||||
We can add a barrel to the `heroes` folder (called `index` by convention) that exports all of these items:
|
||||
code-example.
|
||||
export * from './hero.model.ts'; // re-export all of its exports
|
||||
export * from './hero.service.ts'; // re-export all of its exports
|
||||
export { HeroComponent } from './hero.component.ts'; // re-export the named thing
|
||||
:marked
|
||||
Now a consumer can import what it needs from the barrel.
|
||||
code-example.
|
||||
import { Hero, HeroService } from '../heroes'; // index is implied
|
||||
:marked
|
||||
The Angular [scoped packages](#scoped-package) each have a barrel named `index`.
|
||||
// #enddocregion b-c
|
||||
:marked
|
||||
That's why we can write this:
|
||||
+makeExcerpt('quickstart/ts/app/app.component.ts', 'import', '')
|
||||
// #docregion b-c
|
||||
|
||||
:marked
|
||||
## Binding
|
||||
.l-sub-section
|
||||
:marked
|
||||
Almost always refers to [Data Binding](#data-binding) and the act of
|
||||
binding an HTML object property to a data object property.
|
||||
|
||||
May refer to a [Dependency Injection](#dependency-injection) binding
|
||||
between a "token" or "key" and a dependency [provider](#provider).
|
||||
This more rare usage should be clear in context.
|
||||
|
||||
:marked
|
||||
## Bootstrap
|
||||
.l-sub-section
|
||||
:marked
|
||||
We launch an Angular application by "bootstrapping" it with the `bootstrap` method.
|
||||
The `bootstrap` method identifies an application's top level "root" [Component](#component)
|
||||
and optionally registers service [providers](#provider) with the
|
||||
[dependency injection system](#dependency-injection).
|
||||
|
||||
One can bootstrap multiple apps in the same `index.html`, each with its own top level root.
|
||||
|
||||
<a id="C"></a>
|
||||
.l-main-section
|
||||
:marked
|
||||
## camelCase
|
||||
.l-sub-section
|
||||
:marked
|
||||
The practice of writing compound words or phrases such that each word or abbreviation begins with a capital letter
|
||||
_except the first letter which is a lowercase letter_.
|
||||
|
||||
Function, property, and method names are typically spelled in camelCase. Examples include: `square`, `firstName` and `getHeroes`.
|
||||
|
||||
This form is also known as **lower camel case**, to distinguish it from **upper camel case** which we call [PascalCase](#pascalcase).
|
||||
When we write "camelCase" in this documentation we always mean *lower camel case*.
|
||||
|
||||
:marked
|
||||
## Component
|
||||
.l-sub-section
|
||||
:marked
|
||||
An Angular class responsible for exposing data
|
||||
to a [View](#view) and handling most of the view’s display
|
||||
and user-interaction logic.
|
||||
|
||||
The Component is one of the most important building blocks in the Angular system.
|
||||
It is, in fact, an Angular [Directive](#directive) with a companion [Template](#template).
|
||||
|
||||
The developer applies the `#{atSym}Component` !{decorator} to
|
||||
the component class, thereby attaching to the class the essential component metadata
|
||||
that Angular needs to create a component instance and render it with its template
|
||||
as a view.
|
||||
|
||||
Those familiar with "MVC" and "MVVM" patterns will recognize
|
||||
the Component in the role of "Controller" or "View Model".
|
||||
// #enddocregion b-c
|
||||
|
||||
// #docregion d1
|
||||
<a id="D"></a>
|
||||
.l-main-section
|
||||
:marked
|
||||
## dash-case
|
||||
.l-sub-section
|
||||
:marked
|
||||
The practice of writing compound words or phrases such that each word is separated by a dash or hyphen (`-`).
|
||||
|
||||
Directive selectors and the root of filenames are often spelled in dash-case. Examples include: `my-app` and `hero-list.component.ts`.
|
||||
|
||||
This form is also known as [kebab-case](#kebab-case).
|
||||
|
||||
:marked
|
||||
## Data Binding
|
||||
.l-sub-section
|
||||
:marked
|
||||
Applications display data values to a user and respond to user
|
||||
actions (clicks, touches, keystrokes).
|
||||
|
||||
We could push application data values into HTML, attach
|
||||
event listeners, pull changed values from the screen, and
|
||||
update application data values ... all by hand.
|
||||
|
||||
Or we could declare the relationship between an HTML widget
|
||||
and an application data source ... and let a data binding
|
||||
framework handle the details.
|
||||
|
||||
Data Binding is that second approach. Angular has a rich
|
||||
data binding framework with a variety of data binding
|
||||
operations and supporting declaration syntax.
|
||||
|
||||
The many forms of binding include:
|
||||
* [Interpolation](/docs/ts/latest/guide/template-syntax.html#interpolation)
|
||||
* [Property Binding](/docs/ts/latest/guide/template-syntax.html#property-binding)
|
||||
* [Event Binding](/docs/ts/latest/guide/template-syntax.html#event-binding)
|
||||
* [Attribute Binding](/docs/ts/latest/guide/template-syntax.html#attribute-binding)
|
||||
* [Class Binding](/docs/ts/latest/guide/template-syntax.html#class-binding)
|
||||
* [Style Binding](/docs/ts/latest/guide/template-syntax.html#style-binding)
|
||||
* [Two-way data binding with ngModel](/docs/ts/latest/guide/template-syntax.html#ng-model)
|
||||
|
||||
Learn more about data binding in the
|
||||
[Template Syntax](/docs/ts/latest/guide/template-syntax.html#data-binding) chapter.
|
||||
|
||||
// #enddocregion d1
|
||||
<a id="decorator"></a> <a id="decoration"></a>
|
||||
:marked
|
||||
## Decorator | Decoration
|
||||
.l-sub-section
|
||||
:marked
|
||||
A Decorator is a **function** that adds metadata to a class, its members (properties, methods) and function arguments.
|
||||
|
||||
Decorators are a JavaScript language [feature](https://github.com/wycats/javascript-decorators), implemented in TypeScript and proposed for ES2016 (AKA ES7).
|
||||
|
||||
We apply a decorator by positioning it
|
||||
immediately above or to the left of the thing it decorates.
|
||||
|
||||
Angular has its own set of decorators to help it interoperate with our application parts.
|
||||
Here is an example of a `@Component` decorator that identifies a
|
||||
class as an Angular [Component](#component) and an `@Input` decorator applied to a property
|
||||
of that component.
|
||||
The elided object argument to the `@Component` decorator would contain the pertinent component metadata.
|
||||
```
|
||||
@Component({...})
|
||||
export class AppComponent {
|
||||
constructor(@Inject('SpecialFoo') public foo:Foo) {}
|
||||
@Input() name:string;
|
||||
}
|
||||
```
|
||||
The scope of a decorator is limited to the language feature
|
||||
that it decorates. None of the decorations shown here will "leak" to other
|
||||
classes appearing below it in the file.
|
||||
|
||||
.alert.is-important
|
||||
:marked
|
||||
Always include the parentheses `()` when applying a decorator.
|
||||
A decorator is a **function** that must be called when applied.
|
||||
|
||||
// #docregion d2
|
||||
:marked
|
||||
## Dependency Injection
|
||||
.l-sub-section
|
||||
:marked
|
||||
Dependency Injection is both a design pattern and a mechanism
|
||||
for creating and delivering parts of an application to other
|
||||
parts of an application that request them.
|
||||
|
||||
Angular developers prefer to build applications by defining many simple parts
|
||||
that each do one thing well and then wire them together at runtime.
|
||||
|
||||
These parts often rely on other parts. An Angular [Component](#component)
|
||||
part might rely on a service part to get data or perform a calculation. When a
|
||||
part "A" relies on another part "B", we say that "A" depends on "B" and
|
||||
that "B" is a dependency of "A".
|
||||
|
||||
We can ask a "Dependency Injection System" to create "A"
|
||||
for us and handle all the dependencies.
|
||||
If "A" needs "B" and "B" needs "C", the system resolves that chain of dependencies
|
||||
and returns a fully prepared instance of "A".
|
||||
|
||||
Angular provides and relies upon its own sophisticated
|
||||
[Dependency Injection](dependency-injection.html) system
|
||||
to assemble and run applications by "injecting" application parts
|
||||
into other application parts where and when needed.
|
||||
|
||||
At the core there is an [`Injector`](#injector) that returns dependency values on request.
|
||||
The expression `injector.get(token)` returns the value associated with the given token.
|
||||
|
||||
A token is an Angular type (`OpaqueToken`). We rarely deal with tokens directly; most
|
||||
methods accept a class name (`Foo`) or a string ("foo") and Angular converts it
|
||||
to a token. When we write `injector.get(Foo)`, the injector returns
|
||||
the value associated with the token for the `Foo` class, typically an instance of `Foo` itself.
|
||||
|
||||
Angular makes similar requests internally during many of its operations
|
||||
as when it creates a [`Component`](#component) for display.
|
||||
|
||||
The `Injector` maintains an internal map of tokens to dependency values.
|
||||
If the `Injector` can't find a value for a given token, it creates
|
||||
a new value using a `Provider` for that token.
|
||||
|
||||
A [Provider](#provider) is a recipe for
|
||||
creating new instances of a dependency value associated with a particular token.
|
||||
|
||||
An injector can only create a value for a given token if it has
|
||||
a `Provider` for that token in its internal provider registry.
|
||||
Registering providers is a critical preparatory step.
|
||||
|
||||
Angular registers some of its own providers with every injector.
|
||||
We can register our own providers. Quite often the best time to register a `Provider`
|
||||
is when we [bootstrap](#bootstrap) the application.
|
||||
There are other opportunities to register as well.
|
||||
|
||||
Learn more in the [Dependency Injection](/docs/ts/latest/guide/dependency-injection.html) chapter.
|
||||
:marked
|
||||
## Directive
|
||||
.l-sub-section
|
||||
:marked
|
||||
An Angular class responsible for creating, re-shaping, and interacting with HTML elements
|
||||
in the browser DOM. Directives are Angular's most fundamental feature.
|
||||
|
||||
A Directive is almost always associated with an HTML element or attribute.
|
||||
We often refer to such an element or attribute as the directive itself.
|
||||
When Angular finds a directive in an HTML template,
|
||||
it creates the matching directive class instance
|
||||
and gives that instance control over that portion of the browser DOM.
|
||||
|
||||
Developers can invent custom HTML markup (e.g., `<my-directive>`) to
|
||||
associate with their custom directives. They add this custom markup to HTML templates
|
||||
as if they were writing native HTML. In this way, directives become extensions of
|
||||
HTML itself.
|
||||
|
||||
Directives fall into one of three categories:
|
||||
|
||||
1. [Components](#component) that combine application logic with an HTML template to
|
||||
render application [views]. Components are usually represented as HTML elements.
|
||||
They are the building blocks of an Angular application and the
|
||||
developer can expect to write a lot of them.
|
||||
|
||||
1. [Attribute Directives](#attribute-directive) that can listen to and modify the behavior of
|
||||
other HTML elements, attributes, properties, and components. They are usually represented
|
||||
as HTML attributes, hence the name.
|
||||
|
||||
1. [Structural Directives](#structural-directive), a directive responsible for
|
||||
shaping or re-shaping HTML layout, typically by adding, removing, or manipulating
|
||||
elements and their children.
|
||||
// #enddocregion d2
|
||||
|
||||
// #docregion e1
|
||||
<a id="E"></a>
|
||||
// #enddocregion e1
|
||||
// #docregion e2
|
||||
.l-main-section
|
||||
:marked
|
||||
## ECMAScript
|
||||
.l-sub-section
|
||||
:marked
|
||||
The [official JavaScript language specification](https://en.wikipedia.org/wiki/ECMAScript).
|
||||
|
||||
The latest approved version of JavaScript is
|
||||
[ECMAScript 2015](http://www.ecma-international.org/ecma-262/6.0/)
|
||||
(AKA "ES2015" or "ES6") and many Angular 2 developers will write their applications
|
||||
either in this version of the language or a dialect that strives to be
|
||||
compatible with it such as [TypeScript](#typesScript).
|
||||
|
||||
Most modern browsers today only support the prior "ECMAScript 5" (AKA ES5) standard.
|
||||
Applications written in ES2015 or one of its dialects must be "[transpiled](#transpile)"
|
||||
to ES5 JavaScript.
|
||||
|
||||
Angular 2 developers may choose to write in ES5 directly.
|
||||
:marked
|
||||
## ECMAScript 2015
|
||||
.l-sub-section
|
||||
:marked
|
||||
The latest released version of JavaScript,
|
||||
[ECMAScript 2015](http://www.ecma-international.org/ecma-262/6.0/)
|
||||
(AKA "ES2015" or "ES6")
|
||||
:marked
|
||||
## ES2015
|
||||
.l-sub-section
|
||||
:marked
|
||||
Short hand for "[ECMAScript 2015](#ecmascript=2015)".
|
||||
:marked
|
||||
## ES6
|
||||
.l-sub-section
|
||||
:marked
|
||||
Short hand for "[ECMAScript 2015](#ecmascript=2015)".
|
||||
:marked
|
||||
## ES5
|
||||
.l-sub-section
|
||||
:marked
|
||||
Short hand for "ECMAScript 5", the version of JavaScript run by most modern browsers.
|
||||
See [ECMAScript](#ecmascript).
|
||||
// #enddocregion e2
|
||||
|
||||
// #docregion f-l
|
||||
<a id="F"></a>
|
||||
<a id="G"></a>
|
||||
<a id="H"></a>
|
||||
<a id="I"></a>
|
||||
.l-main-section
|
||||
:marked
|
||||
## Injector
|
||||
.l-sub-section
|
||||
:marked
|
||||
An object in the Angular [dependency injection system](#dependency-injection)
|
||||
that can find a named "dependency" in its cache or create such a thing
|
||||
with a registered [provider](#provider).
|
||||
|
||||
:marked
|
||||
## Input
|
||||
.l-sub-section
|
||||
:marked
|
||||
A directive property that can be the ***target*** of a
|
||||
[Property Binding](/docs/ts/latest/guide/template-syntax.html#property-binding).
|
||||
Data values flow *into* this property from the data source identified
|
||||
in the template expression to the right of the equal sign.
|
||||
|
||||
See the [Template Syntax](/docs/ts/latest/guide/template-syntax.html#inputs-outputs) chapter.
|
||||
|
||||
:marked
|
||||
## Interpolation
|
||||
.l-sub-section
|
||||
:marked
|
||||
A form of [Property Data Binding](#data-binding) in which a
|
||||
[template expression](#template-expression) between double-curly braces
|
||||
renders as text. That text may be concatenated with neighboring text
|
||||
before it is assigned to an element property
|
||||
or displayed between element tags as in this example.
|
||||
|
||||
code-example(language="html" escape="html").
|
||||
<label>My current hero is {{hero.name}}</label>
|
||||
|
||||
:marked
|
||||
Learn more about interpolation in the
|
||||
[Template Syntax](/docs/ts/latest/guide/template-syntax.html#interpolation) chapter.
|
||||
|
||||
|
||||
<a id="J"></a>
|
||||
|
||||
.l-main-section
|
||||
<a id="K"></a>
|
||||
:marked
|
||||
## kebab-case
|
||||
.l-sub-section
|
||||
:marked
|
||||
The practice of writing compound words or phrases such that each word is separated by a dash or hyphen (`-`).
|
||||
|
||||
Directive selectors and the root of filenames are often spelled in kebab-case. Examples include: `my-app` and `hero-list.component.ts`.
|
||||
|
||||
This form is also known as [dash-case](#dash-case).
|
||||
|
||||
<a id="L"></a>
|
||||
.l-main-section
|
||||
:marked
|
||||
## Lifecycle Hooks
|
||||
.l-sub-section
|
||||
:marked
|
||||
[Directives](#directive) and [Components](#component) have a lifecycle
|
||||
managed by Angular as it creates, updates and destroys them.
|
||||
|
||||
Developers can tap into key moments in that lifecycle by implementing
|
||||
one or more of the "Lifecycle Hook" interfaces.
|
||||
|
||||
Each interface has a single hook method whose name is the interface name prefixed with `ng`.
|
||||
For example, the `OnInit` interface has a hook method names `ngOnInit`.
|
||||
|
||||
Angular calls these hook methods in the following order:
|
||||
* `ngOnChanges` - called when an [input](#input)/[output](#output) binding values change
|
||||
* `ngOnInit` - after the first `ngOnChanges`
|
||||
* `ngDoCheck` - developer's custom change detection
|
||||
* `ngAfterContentInit` - after component content initialized
|
||||
* `ngAfterContentChecked` - after every check of component content
|
||||
* `ngAfterViewInit` - after component's view(s) are initialized
|
||||
* `ngAfterViewChecked` - after every check of a component's view(s)
|
||||
* `ngOnDestroy` - just before the directive is destroyed.
|
||||
|
||||
Learn more in the [Lifecycle Hooks](/docs/ts/latest/guide/lifecycle-hooks.html) chapter.
|
||||
// #enddocregion f-l
|
||||
|
||||
// #docregion m1
|
||||
<a id="M"></a>
|
||||
// #enddocregion m1
|
||||
// #docregion m2
|
||||
.l-main-section
|
||||
:marked
|
||||
## Module
|
||||
.l-sub-section
|
||||
:marked
|
||||
Angular apps are modular.
|
||||
|
||||
In general, we assemble our application from many modules, both the ones we write ourselves
|
||||
and the ones we acquire from others.
|
||||
|
||||
A typical module is a cohesive block of code dedicated to a single purpose.
|
||||
|
||||
A module **exports** something of value in that code, typically one thing such as a class.
|
||||
A module that needs that thing, **imports** it.
|
||||
|
||||
The structure of Angular modules and the import/export syntax
|
||||
is based on the [ES2015](#es2015) module standard
|
||||
described [here](http://www.2ality.com/2014/09/es6-modules-final.html).
|
||||
|
||||
An application that adheres to this standard requires a module loader to
|
||||
load modules on request and resolve inter-module dependencies.
|
||||
Angular does not ship with a module loader and does not have a preference
|
||||
for any particular 3rd party library (although most samples use SystemJS).
|
||||
Application developers may pick any module library that conforms to the standard
|
||||
|
||||
Modules are typically named after the file in which the exported thing is defined.
|
||||
The Angular [DatePipe](https://github.com/angular/angular/blob/master/modules/@angular/common/src/pipes/date_pipe.ts)
|
||||
class belongs to a feature module named `date_pipe` in the file `date_pipe.ts`.
|
||||
|
||||
Developers rarely access Angular feature modules directly.
|
||||
We usually import them from one of the Angular [scoped packages](#scoped-package) such as `@angular/core`.
|
||||
|
||||
// #enddocregion m2
|
||||
|
||||
// #docregion n-s-1
|
||||
- var lang = current.path[1]
|
||||
- var decorator = lang === 'dart' ? 'annotation' : '<a href="#decorator">decorator</a>'
|
||||
- var atSym = lang === 'js' ? '' : '@'
|
||||
<a id="N"></a>
|
||||
<a id="O"></a>
|
||||
.l-main-section
|
||||
:marked
|
||||
## Output
|
||||
.l-sub-section
|
||||
:marked
|
||||
A directive property that can be the ***target*** of an
|
||||
[Event Binding](/docs/ts/latest/guide/template-syntax.html#property-binding).
|
||||
Events stream *out* of this property to the receiver identified
|
||||
in the template expression to the right of the equal sign.
|
||||
|
||||
See the [Template Syntax](/docs/ts/latest/guide/template-syntax.html#inputs-outputs) chapter.
|
||||
|
||||
.l-main-section
|
||||
<a id="P"></a>
|
||||
:marked
|
||||
## PascalCase
|
||||
.l-sub-section
|
||||
:marked
|
||||
The practice of writing compound words or phrases such that each word or abbreviation begins with a capital letter.
|
||||
Class names are typically spelled in PascalCase. Examples include: `Person` and `Customer`.
|
||||
|
||||
This form is also known as **upper camel case**, to distinguish it from **lower camel case** which we simply call [camelCase](#camelcase).
|
||||
In this documentation, "PascalCase" means *upper camel case* and "camelCase" means *lower camel case*.
|
||||
|
||||
:marked
|
||||
## Pipe
|
||||
.l-sub-section
|
||||
:marked
|
||||
An Angular pipe is a function that transforms input values to output values for
|
||||
display in a [view](#view). We use the `#{atSym}Pipe` !{decorator}
|
||||
to associate the pipe function with a name. We then can use that
|
||||
name in our HTML to declaratively transform values on screen.
|
||||
|
||||
Here's an example that uses the built-in `currency` pipe to display
|
||||
a numeric value in the local currency.
|
||||
|
||||
code-example(language="html" escape="html").
|
||||
<label>Price: </label>{{product.price | currency}}
|
||||
:marked
|
||||
Learn more in the chapter on [pipes](/docs/ts/latest/guide/pipes.html) .
|
||||
|
||||
:marked
|
||||
## Provider
|
||||
.l-sub-section
|
||||
:marked
|
||||
A Provider creates a new instance of a dependency for the Dependency Injection system.
|
||||
It relates a lookup token to code - sometimes called a "recipe" - that can create a dependency value.
|
||||
|
||||
For example, `new Provider(Foo, {useClass: Foo})` creates a `Provider`
|
||||
that relates the `Foo` token to a function that creates a new instance of the `Foo` class.
|
||||
|
||||
There are other ways to create tokens and recipes.
|
||||
See [Dependency Injection](#dependency-injection) chapter to learn more.
|
||||
|
||||
.l-main-section
|
||||
<a id="Q"></a>
|
||||
<a id="R"></a>
|
||||
:marked
|
||||
## Router
|
||||
.l-sub-section
|
||||
:marked
|
||||
Most applications consist of many screens or [views](#view).
|
||||
The user navigates among them by clicking links and buttons
|
||||
and taking other similar actions that cause the application to
|
||||
replace one view with another.
|
||||
|
||||
The Angular [Component Router](/docs/ts/latest/guide/router.html) is a richly featured mechanism for configuring
|
||||
and managing the entire view navigation process including the creation and destruction
|
||||
of views.
|
||||
:marked
|
||||
## Routing Component
|
||||
.l-sub-section
|
||||
:marked
|
||||
A [Component](#component) with an attached router.
|
||||
|
||||
In most cases, the component became attached to a [router](#router) by means
|
||||
of a `#{atSym}RouterConfig` #{decorator} that defined routes to views controlled by this component.
|
||||
|
||||
The component's template has a `RouterOutlet` element where it can display views produced by the router.
|
||||
|
||||
It likely has anchor tags or buttons with `RouterLink` directives that users can click to navigate.
|
||||
|
||||
<a id="S"></a>
|
||||
.l-main-section
|
||||
// #enddocregion n-s-1
|
||||
:marked
|
||||
## Scoped Package
|
||||
.l-sub-section
|
||||
:marked
|
||||
Angular modules are delivered within *scoped packages* such as `@angular/core`, `@angular/common`, `@angular/platform-browser-dynamic`,
|
||||
`@angular/http`, and `@angular/router`.
|
||||
|
||||
A [*scoped package*](https://docs.npmjs.com/misc/scope) is a way to group related *npm* packages.
|
||||
|
||||
We import a scoped package the same way we'd import a *normal* package.
|
||||
The only difference, from a consumer perspective,
|
||||
is that the package name begins with the Angular *scope name*, `@angular`.
|
||||
|
||||
+makeExcerpt('architecture/ts/app/app.component.ts', 'import', '')
|
||||
// #docregion n-s-2
|
||||
|
||||
:marked
|
||||
## Structural Directive
|
||||
.l-sub-section
|
||||
:marked
|
||||
A category of [Directive](#directive) that can
|
||||
shape or re-shape HTML layout, typically by adding, removing, or manipulating
|
||||
elements and their children.
|
||||
|
||||
The `ngIf` "conditional element" directive and the `ngFor` "repeater" directive are
|
||||
good examples in this category.
|
||||
// #enddocregion n-s-2
|
||||
|
||||
// #docregion t1
|
||||
<a id="T"></a>
|
||||
.l-main-section
|
||||
:marked
|
||||
## Template
|
||||
.l-sub-section
|
||||
:marked
|
||||
A template is a chunk of HTML that Angular uses to render a [view](#view) with
|
||||
the support and continuing guidance of an Angular [Directive](#directive),
|
||||
most notably a [Component](#component).
|
||||
|
||||
We write templates in a special [Template Syntax](/docs/ts/latest/guide/template-syntax.html).
|
||||
|
||||
:marked
|
||||
## Template Expression
|
||||
.l-sub-section
|
||||
:marked
|
||||
An expression in a JavaScript-like syntax that Angular evaluates within
|
||||
a [data binding](#data-binding). Learn how to write template expressions
|
||||
in the [Template Syntax](/docs/ts/latest/guide/template-syntax.html#template-expressions) chapter.
|
||||
|
||||
// #enddocregion t1
|
||||
// #docregion t2
|
||||
:marked
|
||||
## Transpile
|
||||
.l-sub-section
|
||||
:marked
|
||||
The process of transforming code written in one form of JavaScript
|
||||
(e.g., TypeScript) into another form of JavaScript (e.g., [ES5](#es5)).
|
||||
|
||||
:marked
|
||||
## TypeScript
|
||||
.l-sub-section
|
||||
:marked
|
||||
A version of JavaScript that supports most [ECMAScript 2015](#ecmascript=2015)
|
||||
language features and many features that may arrive in future versions
|
||||
of JavaScript such as [Decorators](#decorator).
|
||||
|
||||
TypeScript is also noteable for its optional typing system which gives
|
||||
us compile-time type-checking and strong tooling support (e.g. "intellisense",
|
||||
code completion, refactoring, and intelligent search). Many code editors
|
||||
and IDEs support TypeScript either natively or with plugins.
|
||||
|
||||
TypeScript is the preferred language for Angular 2 development although
|
||||
we are welcome to write in other JavaScript dialects such as [ES5](#es5).
|
||||
|
||||
Angular 2 itself is written in TypeScript.
|
||||
|
||||
Learn more about TypeScript on its [website](http://www.typescriptlang.org/).
|
||||
// #enddocregion t2
|
||||
|
||||
// #docregion u-z
|
||||
<a id="U"></a>
|
||||
<a id="V"></a>
|
||||
.l-main-section
|
||||
:marked
|
||||
## View
|
||||
.l-sub-section
|
||||
:marked
|
||||
A view is a portion of the screen that displays information and responds
|
||||
to user actions such as clicks, mouse moves, and keystrokes.
|
||||
|
||||
Angular renders a view under the control of one or more [Directives](#directive),
|
||||
especially [Component](#component) directives and their companion [Templates](#template).
|
||||
The Component plays such a prominent role that we often
|
||||
find it convenient to refer to a component as a view.
|
||||
|
||||
Views often contain other views and any view might be loaded and unloaded
|
||||
dynamically as the user navigates through the application, typically
|
||||
under the control of a [router](#router).
|
||||
|
||||
.l-main-section
|
||||
<a id="W"></a>
|
||||
<a id="X"></a>
|
||||
<a id="Y"></a>
|
||||
<a id="Z"></a>
|
||||
:marked
|
||||
## Zone
|
||||
.l-sub-section
|
||||
:marked
|
||||
Zones are a mechanism for encapsulating and intercepting
|
||||
a JavaScript application's asynchronous activity.
|
||||
|
||||
The browser DOM and JavaScript have a limited number
|
||||
of asynchronous activities, activities such as DOM events (e.g., clicks),
|
||||
[promises](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise), and
|
||||
[XHR](https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest)
|
||||
calls to remote servers.
|
||||
|
||||
Zones intercept all of these activities and give a "zone client" the opportunity
|
||||
to take action before and after the async activity completes.
|
||||
|
||||
Angular runs our application in a zone where it can respond to
|
||||
asynchronous events by checking for data changes and updating
|
||||
the information it displays via [data binding](#data-binding).
|
||||
|
||||
Learn more about zones in this
|
||||
[Brian Ford video](https://www.youtube.com/watch?v=3IqtmUscE_U).
|
||||
// #enddocregion u-z
|
|
@ -19,6 +19,7 @@ guide/security.jade
|
|||
guide/server-communication.jade
|
||||
guide/structural-directives.jade
|
||||
guide/template-syntax.jade
|
||||
glossary.jade
|
||||
quickstart.jade
|
||||
tutorial/toh-pt6.jade"
|
||||
|
||||
|
|
Loading…
Reference in New Issue