Before this commit we were creating a "fake" TNode for each and every
projectable node passed during dynamic component creation. This approach
had several problems:
- the existing TView structure had to be mutated to accomodate new TNodes and
it was very easy to "corrupt" TView / TNode data structures;
- TNodes are not really needed to fully support projectable nodes so we were
creating objects and updating existing data structures for nothing.
This commit changes the approach so we don't create "fake" TNodes for projectable
nodes but instead we process projectable nodes directly in the projection instruction.
As a result we've got less code, less object allocation and - as a bonus - we fix few
bugs where TView / TNode data structures were corrupted when using projectable nodes.
PR Close#28275
Due to the fact that animations in Angular are defined in the component metadata,
all animation trigger definitions are localized to the component and are
inaccessible outside of it. Animation host listeners in Ivy are
rendered in the context of the parent component, but the VE renders them
differently. This patch ensures that animation host listeners are
always registered in the sub component's renderer
Jira issue: FW-943
Jira issue: FW-958
PR Close#28210
Up until this point, all static attribute values (things like `title` and `id`)
defined within the `host` are of a Component/Directive definition were
generated into a `def.attributes` array and then processed at runtime.
This design decision does not lend itself well to tree-shaking and is
inconsistent with other static values such as styles and classes.
This fix ensures that all static attribute values (attributes, classes,
and styles) that exist within a host definition for components and
directives are all assigned via the `elementHostAttrs` instruction.
```
// before
defineDirective({
...
attributes: ['title', 'my title']
...
})
//now
defineDirective({
...
hostBindings: function() {
if (create) {
elementHostAttrs(..., ['title', 'my-title']);
}
...
}
...
})
```
PR Close#28089
Angular allows for `<ng-content>` elements to include a selector which
filters which content-projected entries are inserted into the container
depending on whether or not the selector is matched.
With Ivy this feature has not fully worked due to the massive changes
that took place inside of Ivy's styling algorithm code (which is
responsible for assigning classes and styles to an element). This
fix ensures that content-projection can correctly identify which slot
an element should be placed into when class-based selectors are used.
PR Close#27849
When requesting a queries instance for a node, it was previously
decided whether it needs to be cloned if the node was not already marked
as hosting a query. This check is in place to have only a single queries
instance per node.
The issue with this approach is that no clone is created for subsequent
instantiations of a component, as the TNode is already marked as hosting
a query during first template pass, whereas the cloning of queries
should be independent of first template pass.
To overcome this issue, the queries are assigned an owner TNode such
that it can reliably be determined if a clone needs to be created.
PR Close#27892
This change is a prerequasity for a later change which will turn the
'di' into its own bazel package. In order to do that we have to:
- have `Injector` type be importable by Ivy. This means that we need
to create `Injector` as a pure type in `interface` folder which is
already a bazel package which Ivy can depend on.
- Remove the dependency of `class Injector` on Ivy so that it can be
compiled in isolation. We do that by using `-1` as special value for
`__NG_ELEMENT_ID__` which tells the Ivy `NodeInjector` than
`Injector` is being requested.
PR Close#28066
Previously the canInsertNativeNode and getRenderParent functions had almost
_exaclty_ the same logic. What was worse that getRenderParent was calling
canInsertNativeNode thus executing the same, non-trivial logic twice.
This commit merges canInsertNativeNode and getRenderParent into one function.
Now getRenderParent will return a native parent or null if a node can't be
inserted (content projection, root of a view that is not inserted etc.).
PR Close#28011
Previously, there could be identical template/listener function names
for a component's template, if it had multiple similarly structured
nested sub-templates or listeners.
This resulted in build errors:
`Identifier '<SOME_IDENTIFIER>' has already been declared`
This commit fixes this by ensuring that the template index is included
in the `contextName` passed to the `TemplateDefinitionBuilder`
responsible for processing nested sub-templates.
Similarly, the template or element index is included in the listener
names.
PR Close#27766
This PR assures that content projection works if an <ng-content> tag is
placed inside an <ng-template> in one component and that <ng-template>
is inserted into a different component. It fixes a bug where the
projection instruction code would walk up the insertion tree to find
selector data instead of the declaration tree.
PR Close#27783
Prior to this commit, we had two different modes for change detection
execution for Ivy, depending on whether you called `bootstrap()` or
`renderComponent()`. In the former case, we would complete creation
mode for all components in the tree before beginning update mode for
any component. In the latter case, we would run creation mode and
update mode together for each component individually.
Maintaining code to support these two different execution orders was
unnecessarily complex, so this commit aligns the two bootstrapping
mechanisms to execute in the same order. Now creation mode always
runs for all components before update mode begins.
This change also simplifies our rendering logic so that we use
`LView` flags as the source of truth for rendering mode instead of
`rf` function arguments. This fixed some related bugs (e.g. calling
`ViewRef.detectChanges` synchronously after the view's creation
would create view nodes twice, view queries would execute twice, etc).
PR Close#27744
Prior to this change, we were unable to match directives using `ng-template` tags (for example the following selector would not work even though there might be some <ng-template>s in a template: `ng-template[directiveA]`. As a result, that broke some components that relies on such selectors to work. In order to resolve the problem, we now pass tag name to the `template` instruction (where we passed `null` before) and this tag name is used for matching at runtime. This update should also help support projecting containers, because the tag name is required to properly match such elements.
PR Close#27636
We had two `NodeInjector` classes: one in `view_compatibility` and one in `di`. We replaced the one in `di` with the one from `view_compatibility` and reconciled their differences.
PR Close#27541
Prior to this change, animation properties were defined as element attributes, which caused errors at runtime. Now all animation-related attributes are defined as element properties.
Also as a part of this update, we start to account for bindings used in animations, which was previously missing.
PR Close#27496
(FW-777)
When an Injector is provided, R3Injector instantiates it by calling its
constructor instead of its factory, not resolving dependencies.
With this fix, the ngInjectorDef is checked and the factory is correctly
used if it is found.
PR Close#27456
BREAKING CHANGE:
The public API for `DebugNode` was accidentally too broad. This change removes
1. Public constructor. Since `DebugNode` is a way for Angular to communicate information
on to the developer there is no reason why the developer should ever need to
Instantiate the `DebugNode`
2. We are also removing `removeChild`, `addChild`, `insertBefore`, and `insertChildAfter`.
All of these methods are used by Angular to constructor the correct `DebugNode` tree.
There is no reason why the developer should ever be constructing a `DebugNode` tree
And these methods should have never been made public.
3. All properties have been change to `readonly` since `DebugNode` is used by Angular
to communicate to developer and there is no reason why these APIs should be writable.
While technically breaking change we don’t expect anyone to be effected by this change.
PR Close#27223
A recent commit (probably 2c7386c) has changed the import graph of the
DI types in core, and somehow results in the ngc compiler deciding to
re-export core DI types from application factories which tangentially
use inject(). This is not really surprising; ngc's import graph can be
very unstable.
However, this results in a re-export of InjectFlags surviving JS
compilation. InjectFlags was a const enum, akin to an interface in TS,
with no runtime repesentation. This causes a warning to be emitted by
Webpack when it sees the re-export of InjectFlags.
This commit avoids the issue by removing 'const' from the declaration
of InjectFlags, causing it to have a runtime value. This is a temporary
fix. The real fix will be for ngc to no longer write exports of const
enums.
Testing strategy: manually verified. Due to the problem only manifesting
when recompiling after a change and then running Webpack, there is no
existing framework via which this could be easily tested with an
integration test. Additionally, the potential for this issue is gone in
Ivy, so this solution is only temporarily needed.
Fixes#27251.
PR Close#27279
These paths are no longer needed / used.
I had to disable one jit mode spec because it fails now that we actually run it.
I root caused the jit test failure as missing forwardRef support. See FW-645.
PR Close#27278
When ngtsc compiles @angular/core, it rewrites core imports to the
r3_symbols.ts file that exposes all internal symbols under their
external name. When creating the FESM bundle, the r3_symbols.ts file
causes the external symbol names to be rewritten to their internal name.
Under ngcc compilations of FESM bundles, the indirection of
r3_symbols.ts is no longer in place such that the external names are
retained in the bundle. Previously, the external name `ɵdefineNgModule`
was explicitly declared internally to resolve this issue, but the
recently added `setClassMetadata` was not declared as such, causing
runtime errors.
Instead of relying on the r3_symbols.ts file to perform the rewrite of
the external modules to their internal variants, the translation is
moved into the `ImportManager` during the compilation itself. This
avoids the need for providing the external name manually.
PR Close#27055
When compiling the flat-file version of the `@angular/core` we need to be aware
that we cannot rely upon imported names to access the ivy definition functions.
The compiler is already clever enough to use local function calls rather than
trying to add a namespaced import, but there is a problem if the local name of the
function is different to the exported name. This is the case for functions that
are not part of the public API, and so are exported under a barred-O private alias.
In `@angular/core` the only decorations in use are `@NgModule` and `@Injectable`.
There are no directives, components, pipes, etc.
Since `defineInjectable` is part of the public API of `@angular/core`, the compiler
is able to generate code that references the original non-barred-O version of the
function.
But the `defineNgModule` is not part of the public API and so the compiler must
generate code that refers to it by the private barred-O version of the function.
This commit imports and then re-exports this barred-O version of `defineModule` to
ensure that the symbol is available in the local scope of the flat-file versions of
the `@angular/core` library.
PR Close#26403
This commit causes a call to setClassMetadata() to be emitted for every
type being compiled by ngtsc (every Angular type). With this metadata,
the TestBed should be able to recompile these classes when overriding
decorator information.
Testing strategy: Tests in the previous commit for
generateSetClassMetadataCall() verify that the metadata as generated is
correct. This commit enables the generation for each DecoratorHandler,
and a test is added to ngtsc_spec to verify all decorated types have
metadata generated for them.
PR Close#26860
These tests were previously not running on CI so they have always been broken,
or got broken just recently :-(.
test(ivy): mark failing test targets with fixme-ivy-jit and fixme-ivy-local tags
PR Close#26735
We are close enough to blacklist a few test targets, rather than whitelist targets to run...
Because bazel rules can be composed of other rules that don't inherit tags automatically,
I had to explicitly mark all of our ts_library and ng_module targes with "ivy-local" and
"ivy-jit" tags so that we can create a query that excludes all fixme- tagged targets even
if those targets are composed of other targets that don't inherit this tag.
This is the updated overview of ivy related bazel tags:
- ivy-only: target that builds or runs only under ivy
- fixme-ivy-jit: target that doesn't yet build or run under ivy with --compile=jit
- fixme-ivy-local: target that doesn't yet build or run under ivy with --compile=local
- no-ivy-jit: target that is not intended to build or run under ivy with --compile=jit
- no-ivy-local: target that is not intended to build or run under ivy with --compile=local
PR Close#26471
Originally, the ivy_switch mechanism used Bazel genrules to conditionally
compile one TS file or another depending on whether ngc or ngtsc was the
selected compiler. This was done because we wanted to avoid importing
certain modules (and thus pulling them into the build) if Ivy was on or
off. This mechanism had a major drawback: ivy_switch became a bottleneck
in the import graph, as it both imports from many places in the codebase
and is imported by many modules in the codebase. This frequently resulted
in cyclic imports which caused issues both with TS and Closure compilation.
It turns out ngcc needs both code paths in the bundle to perform the switch
during its operation anyway, so import switching was later abandoned. This
means that there's no real reason why the ivy_switch mechanism needed to
operate at the Bazel level, and for the ivy_switch file to be a bottleneck.
This commit removes the Bazel-level ivy_switch mechanism, and introduces
an additional TypeScript transform in ngtsc (and the pass-through tsc
compiler used for testing JIT) to perform the same operation that ngcc
does, and flip the switch during ngtsc compilation. This allows the
ivy_switch file to be removed, and the individual switches to be located
directly next to their consumers in the codebase, greatly mitigating the
circular import issues and making the mechanism much easier to use.
As part of this commit, the tag for marking switched variables was changed
from __PRE_NGCC__ to __PRE_R3__, since it's no longer just ngcc which
flips these tags. Most variables were renamed from R3_* to SWITCH_* as well,
since they're referenced mostly in render2 code.
Test strategy: existing test coverage is more than sufficient - if this
didn't work correctly it would break the hello world and todo apps.
PR Close#26550
Create getter methods `getXXXDef` for each definition which
uses `hasOwnProperty` to verify that we don't accidently read form the
parent class.
Fixes: #24011Fixes: #25026
PR Close#25736
Various user code uses 'instanceof' to check whether a particular instance
is a TemplateRef, ElementRef, etc. Ivy needs to work with these checks.
PR Close#25775
By pulling in `compiler` into `core` the `compiler` was not
100% tree-shakable and about 8KB of code was retained
when tree-shaken with closure.
PR Close#25531
Provides a runtime and compile time switch for ivy including
`ApplicationRef.bootstrapModule`.
This is done by naming the symbols such that `ngcc` (angular
Compatibility compiler) can rename symbols in such a way that running
`ngcc` command will switch the `@angular/core` module from `legacy` to
`ivy` mode.
This is done as follows:
```
const someToken__PRE_NGCC__ = ‘legacy mode’;
const someToken__POST_NGCC__ = ‘ivy mode’;
export someSymbol = someToken__PRE_NGCC__;
```
The `ngcc` will search for any token which ends with `__PRE_NGCC__`
and replace it with `__POST_NGCC__`. This allows the `@angular/core`
package to be rewritten to ivy mode post `ngcc` execution.
PR Close#25238
When @angular/core is compiled by ngtsc, a factory file is generated
for ApplicationModule, that is currently invalid because r3_symbols
does not export NgModuleFactory. This change fixes that issue and
ensures the generated ngfactory file for @angular/core is valid.
PR Close#25392
To match the View Engine behavior.
We should make this configurable so that the node injector is tree shaken when
directives do not need to be published.
PR Close#25291
Update XMB placeholders(<ph>) to include the original value on top of an
example. Placeholders can by definition have one example(<ex>) tag and a
text node. The text node is used by TC as the "original" value from the
placeholder, while the example should represent a dummy value.
For example: <ph name="PET"><ex>Gopher</ex>{{ petName }}</ph>.
This change makes sure that we have the original text, but it *DOES NOT*
make sure that the example is correct. The example has the same wrong
behavior of showing the interpolation text rather than a useful
example.
No breaking changes, but tools that depend on the previous behavior and
don't consider the full XMB definition may fail to parse the XMB.
Fixes b/72565847
PR Close#25079
Fixes#25018.
Instantiating a NgModuleRef from NgModuleFactory reuses the NgModuleDefinition if it is already present. However the NgModuleDefinition has a providers array which modified when tree shakable providers are instantiated. This corrupts the provider definitions the next time the same factory is used to create a new NgModuleRef - Two provider definitions can end up with the same index anf the injector could potentially return a completely wrong object for a provider token.
This scenario is more likely on the server where the same NgModuleFactory is reused across requests.
The fix clones the cached NgModuleDefinition so that any tree shakable providers added later do not affect the cached copy.
PR Close#25022
Previously ngtsc would use a tuple of class types for listing metadata
in .d.ts files. For example, an @NgModule's declarations might be
represented with the type:
[NgIf, NgForOf, NgClass]
If the module had no declarations, an empty tuple [] would be produced.
This has two problems.
1. If the class type has generic type parameters, TypeScript will
complain that they're not provided.
2. The empty tuple type is not actually legal.
This commit addresses both problems.
1. Class types are now represented using the `typeof` operator, so the
above declarations would be represented as:
[typeof NgIf, typeof NgForOf, typeof NgClass].
Since typeof operates on a value, it doesn't require generic type
arguments.
2. Instead of an empty tuple, `never` is used to indicate no metadata.
PR Close#24862
- Adds InheritanceDefinitionFeature to ivy
- Ensures that lifecycle hooks are inherited from super classes whether they are defined as directives or not
- Directives cannot inherit from Components
- Components can inherit from Directives or Components
- Ensures that Inputs, Outputs, and Host Bindings are inherited
- Ensures that super class Features are run
PR Close#24570
Previously the todo app imported reflect-metadata, since it is a dependency
of JIT and the todo app tests run in both JIT and AOT modes. However, the
code doesn't get tree-shaken away in AOT mode.
This change adds a target //packages/core/test/bundling/util:reflect_metadata
which, depending on whether the compile flag is in JIT or AOT mode, either
includes reflect-metadata or is a no-op.
Not including reflect-metadata gets the compressed todo bundle down to 12.5 kB.
PR Close#24677
ngtsc is sufficiently capable now that it can compile hello_world
and todo and achieve equivalent results to ngc in ivy (global) mode.
Bundle sizes:
hello_world - 3.0 kB
todo - 14.7 kB
PR Close#24677
This change makes @angular/compiler more tree-shakeable by changing
an enum to a const enum and by getting rid of a top-level map that
the tree-shaker was seeing as a reference which caused r3_identifiers
to be retained.
This drops a few hundred bytes of JS from tree-shaken ngtsc compiled
apps.
PR Close#24677
Previously the repo was depending on an old version of build optimizer.
This change updates to the latest (an RC release in the CLI package).
Additionally, this changes the behavior of ng_rollup_bundle to apply
the optimizer to ngtsc compiled code, and configures it to treat the
@angular/compiler package as side-effect-free.
This results in a substantial size reduction of ngtsc compiled code.
PR Close#24677
All errors for existing fields have been detected and suppressed with a
`!` assertion.
Issue/24571 is tracking proper clean up of those instances.
One-line change required in ivy/compilation.ts, because it appears that
the new syntax causes tsickle emitted node to no longer track their
original sourceFiles.
PR Close#24572
This change supports compilation of components, directives, and modules
within ngtsc. Support is not complete, but is enough to compile and test
//packages/core/test/bundling/todo in full AOT mode. Code size benefits
are not yet achieved as //packages/core itself does not get compiled, and
some decorators (e.g. @Input) are not stripped, leading to unwanted code
being retained by the tree-shaker. This will be improved in future commits.
PR Close#24427
`NgForOf` used to implement `OnChanges` and than use
`ngOnChanges` callback to detect when `ngForOf` binding
changed to update the differ. We now do the checking
manually which puts less pressure on the runtime to do
the bookkeeping and should result in minor perf improvement.
PR Close#23378
This commit builds out enough of the JIT compiler to render
//packages/core/test/bundling/todo, and allows the tests to run in
JIT mode.
To play with the app, run:
bazel run --define=compile=jit //packages/core/test/bundling/todo:prodserver
PR Close#24138
Bazel has a restriction that a single output (eg. a compiled version of
//packages/common) can only be produced by a single rule. This precludes
the Angular repo from having multiple rules that build the same code. And
the complexity of having a single rule produce multiple outputs (eg. an
ngc-compiled version of //packages/common and an Ivy-enabled version) is
too high.
Additionally, the Angular repo has lots of existing tests which could be
executed as-is under Ivy. Such testing is very valuable, and it would be
nice to share not only the code, but the dependency graph / build config
as well.
Thus, this change introduces a --define flag 'compile' with three potential
values. When --define=compile=X is set, the entire build system runs in a
particular mode - the behavior of all existing targets is controlled by
the flag. This allows us to reuse our entire build structure for testing
in a variety of different manners. The flag has three possible settings:
* legacy (the default): the traditional View Engine (ngc) build
* local: runs the prototype ngtsc compiler, which does not rely on global
analysis
* jit: runs ngtsc in a mode which executes tsickle, but excludes the
Angular related transforms, which approximates the behavior of plain
tsc. This allows the main packages such as common to be tested with
the JIT compiler.
Additionally, the ivy_ng_module() rule still exists and runs ngc in a mode
where Ivy-compiled output is produced from global analysis information, as
a stopgap while ngtsc is being developed.
PR Close#24056
This commit adds a mechanism by which the @angular/core annotations
for @Component, @Injectable, and @NgModule become decorators which,
when executed at runtime, trigger just-in-time compilation of their
associated types. The activation of these decorators is configured
by the ivy_switch mechanism, ensuring that the Ivy JIT engine does
not get included in Angular bundles unless specifically requested.
PR Close#23833
Ivy definition looks something like this:
```
class MyService {
static ngInjectableDef = defineInjectable({
…
});
}
```
Here the argument to `defineInjectable` is well known public contract which needs
to be honored in backward compatible way between versions. The type of the
return value of `defineInjectable` on the other hand is private and can change
shape drastically between versions without effecting backwards compatibility of
libraries publish to NPM. To our users it is effectively an opaque token.
For this reson why declare the return value of `defineInjectable` as `never`.
PR Close#23383
Ivy definition looks something like this:
```
class MyService {
static ngInjectableDef = defineInjectable({
…
});
}
```
Here the argument to `defineInjectable` is well known public contract which needs
to be honored in backward compatible way between versions. The type of the
return value of `defineInjectable` on the other hand is private and can change
shape drastically between versions without effecting backwards compatibility of
libraries publish to NPM. To our users it is effectively an `OpaqueToken`.
By prefixing the type with `ɵ` we are communicating the the outside world that
the value is not public API and is subject to change without backward compatibility.
PR Close#23371
When compiling templates the compiler would often bind to
closest context rather than the component context.
The only time one should be binding to the cont component is
in explicit cases where the inner template declares local variable.
PR Close#23168
- properly display initial checked state
- properly remove a todo
Please note that the 'archive' option still doesn't
work correctly as listening to component outputs doesn't
seem to work (onArchive() is never called).
PR Close#23161
This adds compilation of @NgModule providers and imports into
ngInjectorDef statements in generated code. All @NgModule annotations
will be compiled and the @NgModule decorators removed from the
resultant js output.
All @Injectables will also be compiled in Ivy mode, and the decorator
removed.
PR Close#22458
The new rollup rule disables inlining symbols in debug mode. This makes
it look as if there would be more symbols but in reality these are the
symbols which are no longer being inlined.
PR Close#22747
This is a customization of the rollup_bundle rule from rules_nodejs
which adds the build-optimizer as a plugin.
Add a functional test with fast round-trip that asserts the minified app
still works.
Publish the min.js artifact on circleCI so we can track its size.
PR Close#22004