angular-docs-cn/public/resources/images/home/loved-by-millions.svg

521 lines
252 KiB
XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg width="1185px" height="594px" viewBox="0 0 1185 594" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<!-- Generator: Sketch 3.7.2 (28276) - http://www.bohemiancoding.com/sketch -->
<title>Loved by Millions Copy</title>
<desc>Created with Sketch.</desc>
<defs>
<rect x="13" y="13" width="1163" height="565" id="rect-1"></rect>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-2">
<feOffset dx="0" dy="5" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="2.5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0" type="matrix" in="shadowBlurOuter1"></feColorMatrix>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-3">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-4">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-5">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-6">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-7">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-8">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-9">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-10">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-11">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-12">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-13">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-14">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-15">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-16">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-17">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-18">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-19">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-20">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-21">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-22">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-23">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-24">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-25">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-26">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-27">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-28">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-29">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-30">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-31">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-32">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
<filter x="-50%" y="-50%" width="200%" height="200%" filterUnits="objectBoundingBox" id="filter-33">
<feOffset dx="0" dy="6" in="SourceAlpha" result="shadowOffsetOuter1"></feOffset>
<feGaussianBlur stdDeviation="5" in="shadowOffsetOuter1" result="shadowBlurOuter1"></feGaussianBlur>
<feColorMatrix values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0" type="matrix" in="shadowBlurOuter1" result="shadowMatrixOuter1"></feColorMatrix>
<feMerge>
<feMergeNode in="shadowMatrixOuter1"></feMergeNode>
<feMergeNode in="SourceGraphic"></feMergeNode>
</feMerge>
</filter>
</defs>
<g id="Loved-by-Millions" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd">
<g id="Loved-by-Millions-Copy">
<g id="map">
<use fill="black" fill-opacity="1" filter="url(#filter-2)" xlink:href="#rect-1"></use>
<image x="13" y="13" width="1163" height="565" xlink:href=""></image>
</g>
<rect id="overlay" fill-opacity="0.810000002" fill="#3BA8CF" style="mix-blend-mode: overlay;" x="13" y="13" width="1163" height="565"></rect>
<g id="pins" transform="translate(99.000000, 97.000000)">
<g id="angular" filter="url(#filter-3)" transform="translate(1021.000000, 0.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-4)" transform="translate(96.000000, 238.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-5)" transform="translate(503.000000, 58.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" transform="translate(64.000000, 84.000000)">
<g id="Group" filter="url(#filter-6)" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" transform="translate(16.000000, 111.000000)">
<g id="Group" filter="url(#filter-7)" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" transform="translate(98.000000, 121.000000)">
<g id="Group" filter="url(#filter-8)" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" transform="translate(188.000000, 161.000000)">
<g id="Group" filter="url(#filter-9)" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" transform="translate(151.000000, 130.000000)">
<g id="Group" filter="url(#filter-10)" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-11)" transform="translate(56.000000, 162.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-12)" transform="translate(84.000000, 175.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-13)" transform="translate(138.000000, 203.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-14)" transform="translate(163.000000, 209.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-15)" transform="translate(567.000000, 284.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-16)" transform="translate(591.000000, 88.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-17)" transform="translate(567.000000, 15.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" transform="translate(241.000000, 343.000000)">
<g id="Group" filter="url(#filter-18)" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-19)" transform="translate(269.000000, 384.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-20)" transform="translate(174.000000, 310.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" transform="translate(0.000000, 34.000000)">
<g id="Group" filter="url(#filter-21)" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-22)" transform="translate(754.000000, 184.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-23)" transform="translate(859.000000, 218.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-24)" transform="translate(833.000000, 172.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-25)" transform="translate(966.000000, 433.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-26)" transform="translate(533.000000, 118.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-27)" transform="translate(802.000000, 181.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-28)" transform="translate(833.000000, 224.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-29)" transform="translate(566.000000, 120.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-30)" transform="translate(909.000000, 128.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-31)" transform="translate(882.000000, 122.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-32)" transform="translate(828.000000, 15.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
<g id="angular" filter="url(#filter-33)" transform="translate(475.000000, 122.000000)">
<g id="Group" transform="translate(0.800000, 0.880000)">
<polygon id="Shape" fill="#DD0031" points="15.12 0 15.12 0 15.12 0 0.144765957 5.3784 2.42885106 25.3206 15.12 32.4 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<polygon id="Shape" fill="#C3002F" points="15.12 0 15.12 3.5964 15.12 3.5802 15.12 19.9908 15.12 19.9908 15.12 32.4 15.12 32.4 27.8111489 25.3206 30.095234 5.3784"></polygon>
<path d="M15.12,3.5802 L5.75846809,24.7212 L5.75846809,24.7212 L9.24893617,24.7212 L9.24893617,24.7212 L11.1308936,19.9908 L19.0769362,19.9908 L20.9588936,24.7212 L20.9588936,24.7212 L24.4493617,24.7212 L24.4493617,24.7212 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 L15.12,3.5802 Z M17.8544681,17.0748 L12.3855319,17.0748 L15.12,10.449 L17.8544681,17.0748 L17.8544681,17.0748 Z" id="Shape" fill="#FFFFFF"></path>
</g>
</g>
</g>
</g>
</g>
</svg>