druid-docs-cn/Tutorials/chapter-11.md

126 lines
5.1 KiB
Markdown
Raw Normal View History

2020-03-29 06:57:15 -04:00
<!-- toc -->
2020-03-30 04:19:05 -04:00
## 输入数据变换
本教程将演示如何使用转换规范在接收期间过滤和转换输入数据
本教程我们假设您已经按照[单服务器部署](../GettingStarted/chapter-3.md)中描述下载了Druid并运行在本地机器上。
完成[加载本地文件](./chapter-1.md)、[数据查询](./chapter-4.md)和[roll-up](./chapter-5.md)部分内容也是非常有帮助的
### 样例数据
我们在 `quickstart/tutorial/transform-data.json` 中包括了样例数据,为了方便我们展示一下:
```
{"timestamp":"2018-01-01T07:01:35Z","animal":"octopus", "location":1, "number":100}
{"timestamp":"2018-01-01T05:01:35Z","animal":"mongoose", "location":2,"number":200}
{"timestamp":"2018-01-01T06:01:35Z","animal":"snake", "location":3, "number":300}
{"timestamp":"2018-01-01T01:01:35Z","animal":"lion", "location":4, "number":300}
```
### 使用转换规范加载数据
我们将使用以下规范摄取示例数据,该规范演示了转换规范的使用:
```
{
"type" : "index_parallel",
"spec" : {
"dataSchema" : {
"dataSource" : "transform-tutorial",
"timestampSpec": {
"column": "timestamp",
"format": "iso"
},
"dimensionsSpec" : {
"dimensions" : [
"animal",
{ "name": "location", "type": "long" }
]
},
"metricsSpec" : [
{ "type" : "count", "name" : "count" },
{ "type" : "longSum", "name" : "number", "fieldName" : "number" },
{ "type" : "longSum", "name" : "triple-number", "fieldName" : "triple-number" }
],
"granularitySpec" : {
"type" : "uniform",
"segmentGranularity" : "week",
"queryGranularity" : "minute",
"intervals" : ["2018-01-01/2018-01-03"],
"rollup" : true
},
"transformSpec": {
"transforms": [
{
"type": "expression",
"name": "animal",
"expression": "concat('super-', animal)"
},
{
"type": "expression",
"name": "triple-number",
"expression": "number * 3"
}
],
"filter": {
"type":"or",
"fields": [
{ "type": "selector", "dimension": "animal", "value": "super-mongoose" },
{ "type": "selector", "dimension": "triple-number", "value": "300" },
{ "type": "selector", "dimension": "location", "value": "3" }
]
}
}
},
"ioConfig" : {
"type" : "index_parallel",
"inputSource" : {
"type" : "local",
"baseDir" : "quickstart/tutorial",
"filter" : "transform-data.json"
},
"inputFormat" : {
"type" :"json"
},
"appendToExisting" : false
},
"tuningConfig" : {
"type" : "index_parallel",
"maxRowsPerSegment" : 5000000,
"maxRowsInMemory" : 25000
}
}
}
```
在转换规范中,我们有两个表达式转换:
* `super-animal`: 在 `"animal"` 列的值前加上"super-"。这将用转换后的版本覆盖 `animal` 列,因为转换的名称是 `animal`
* `triple-number`: 将数字列乘以3, 这将创建一个新的三位数列。注意,我们同时接收原始列和转换列
另外我们有一个包含三个子句的OR过滤器
* `super-animal` 值匹配"super-mongoose"
* `triple-number` 值匹配300
* `location`值匹配3
这个过滤器选择前3行它将排除输入数据中的最后一个"lion"行。请注意,过滤器是在转换之后应用的。
现在提交位于 `quickstart/tutorial/transform-index.json` 的任务:
```
bin/post-index-task --file quickstart/tutorial/transform-index.json --url http://localhost:8081
```
### 查询已转换的数据
运行 `bin/dsql` 提交 `select * from "transform-tutorial"` 查询来看摄入的数据:
```
dsql> select * from "transform-tutorial";
┌──────────────────────────┬────────────────┬───────┬──────────┬────────┬───────────────┐
│ __time │ animal │ count │ location │ number │ triple-number │
├──────────────────────────┼────────────────┼───────┼──────────┼────────┼───────────────┤
│ 2018-01-01T05:01:00.000Z │ super-mongoose │ 1 │ 2 │ 200 │ 600 │
│ 2018-01-01T06:01:00.000Z │ super-snake │ 1 │ 3 │ 300 │ 900 │
│ 2018-01-01T07:01:00.000Z │ super-octopus │ 1 │ 1 │ 100 │ 300 │
└──────────────────────────┴────────────────┴───────┴──────────┴────────┴───────────────┘
Retrieved 3 rows in 0.03s.
```
"Lion"列被丢弃,`animal`列被转换,我们既有原始列,也有转换后的数字列。