243 lines
9.0 KiB
Markdown
243 lines
9.0 KiB
Markdown
<!-- toc -->
|
||
|
||
<script async src="https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js"></script>
|
||
<ins class="adsbygoogle"
|
||
style="display:block; text-align:center;"
|
||
data-ad-layout="in-article"
|
||
data-ad-format="fluid"
|
||
data-ad-client="ca-pub-8828078415045620"
|
||
data-ad-slot="7586680510"></ins>
|
||
<script>
|
||
(adsbygoogle = window.adsbygoogle || []).push({});
|
||
</script>
|
||
|
||
## TopN查询
|
||
|
||
> [!WARNING]
|
||
> Apache Druid支持两种查询语言: [Druid SQL](druidsql.md) 和 [原生查询](makeNativeQueries.md)。该文档描述了原生查询中的一种查询方式。 对于Druid SQL中使用的该种类型的信息,可以参考 [SQL文档](druidsql.md)。
|
||
|
||
Apache Druid TopN查询根据某些条件返回给定维度中值的排序结果集。从概念上讲,可以将它们看作是一个具有[排序](limitspec.md)的、在单个维度上的近似[GroupByQuery](groupby.md), 在该场景下TopN查询比GroupBy查询更加的效率。 这些类型的查询获取一个topN查询对象并返回一个JSON对象数组,其中每个对象代表topN查询所请求的值。
|
||
|
||
TopN是近似查询,因为每个数据进程将对其前K个结果进行排序,并且只将那些前K个结果返回给Broker。在Druid中K的默认值是 `max(1000, threshold)`。在实践中,这意味着,如果你要求查询前1000个数据,前900个数据的正确性将为100%,之后的结果排序将无法保证。通过增加阈值可以使TopNs更加精确。
|
||
|
||
TopN的查询对象如下所示:
|
||
|
||
```json
|
||
{
|
||
"queryType": "topN",
|
||
"dataSource": "sample_data",
|
||
"dimension": "sample_dim",
|
||
"threshold": 5,
|
||
"metric": "count",
|
||
"granularity": "all",
|
||
"filter": {
|
||
"type": "and",
|
||
"fields": [
|
||
{
|
||
"type": "selector",
|
||
"dimension": "dim1",
|
||
"value": "some_value"
|
||
},
|
||
{
|
||
"type": "selector",
|
||
"dimension": "dim2",
|
||
"value": "some_other_val"
|
||
}
|
||
]
|
||
},
|
||
"aggregations": [
|
||
{
|
||
"type": "longSum",
|
||
"name": "count",
|
||
"fieldName": "count"
|
||
},
|
||
{
|
||
"type": "doubleSum",
|
||
"name": "some_metric",
|
||
"fieldName": "some_metric"
|
||
}
|
||
],
|
||
"postAggregations": [
|
||
{
|
||
"type": "arithmetic",
|
||
"name": "average",
|
||
"fn": "/",
|
||
"fields": [
|
||
{
|
||
"type": "fieldAccess",
|
||
"name": "some_metric",
|
||
"fieldName": "some_metric"
|
||
},
|
||
{
|
||
"type": "fieldAccess",
|
||
"name": "count",
|
||
"fieldName": "count"
|
||
}
|
||
]
|
||
}
|
||
],
|
||
"intervals": [
|
||
"2013-08-31T00:00:00.000/2013-09-03T00:00:00.000"
|
||
]
|
||
}
|
||
```
|
||
|
||
对于TopN查询,有11个部分,如下:
|
||
|
||
| 属性 | 描述 | 是否必须 |
|
||
|-|-|-|
|
||
| queryType | 该字符串总是"TopN",Druid根据该值来确定如何解析查询 | 是 |
|
||
| dataSource | 定义将要查询的字符串或者对象,与关系型数据库中的表类似。 详情可以查看 [数据源](datasource.md) 部分。 | 是 |
|
||
| intervals | ISO-8601格式的时间间隔,定义了查询的时间范围 | 是 |
|
||
| granularity | 定义查询粒度, 参见 [Granularities](granularity.md) | 是 |
|
||
| filter | 参见 [Filters](filters.md) | 否 |
|
||
| aggregations | 参见[Aggregations](Aggregations.md) | 对于数值类型的metricSpec, aggregations或者postAggregations必须指定,否则非必须 |
|
||
| postAggregations | 参见[postAggregations](postaggregation.md) | 对于数值类型的metricSpec, aggregations或者postAggregations必须指定,否则非必须 |
|
||
| dimension | 一个string或者json对象,用来定义topN查询的维度列,详情参见[DimensionSpec](dimensionspec.md) | 是 |
|
||
| threshold | 在topN中定义N的一个整型数字,例如:在top列表中返回多少个结果 | 是 |
|
||
| metric | 一个string或者json对象,用来指定top列表的排序。更多信息可以参见[TopNMetricSpec](topnsorting.md) | 是 |
|
||
| context | 参见[Context](query-context.md) | 否 |
|
||
|
||
请注意,context JSON对象也可用于topN查询,应该像timeseries一样谨慎使用。结果的格式如下:
|
||
|
||
```json
|
||
[
|
||
{
|
||
"timestamp": "2013-08-31T00:00:00.000Z",
|
||
"result": [
|
||
{
|
||
"dim1": "dim1_val",
|
||
"count": 111,
|
||
"some_metrics": 10669,
|
||
"average": 96.11711711711712
|
||
},
|
||
{
|
||
"dim1": "another_dim1_val",
|
||
"count": 88,
|
||
"some_metrics": 28344,
|
||
"average": 322.09090909090907
|
||
},
|
||
{
|
||
"dim1": "dim1_val3",
|
||
"count": 70,
|
||
"some_metrics": 871,
|
||
"average": 12.442857142857143
|
||
},
|
||
{
|
||
"dim1": "dim1_val4",
|
||
"count": 62,
|
||
"some_metrics": 815,
|
||
"average": 13.14516129032258
|
||
},
|
||
{
|
||
"dim1": "dim1_val5",
|
||
"count": 60,
|
||
"some_metrics": 2787,
|
||
"average": 46.45
|
||
}
|
||
]
|
||
}
|
||
]
|
||
```
|
||
|
||
### 多值维度上的TopN
|
||
|
||
topN查询可以按多值维度分组。在多值维度上分组时,来自匹配行的所有值将为每个值生成一个组。查询返回的组可能多于行数。例如,在维度`tags`上带有过滤器`"t1" AND "t3"`的topN将只匹配row1,并生成包含三个组的结果:`t1`、`t2`和`t3`。如果只需要包含与过滤器匹配的值,则可以使用 [filtered dimensionSpec](dimensionspec.md), 这也可以提高性能。
|
||
|
||
更过详细信息还可以参见[多值维度](multi-value-dimensions.md)
|
||
|
||
### 混淆之处
|
||
|
||
目前的TopN算法是一种近似算法,返回每个段的前1000个局部结果以进行合并,以确定全局topN。因此,topN算法在秩和结果上都是近似的。近似结果*仅适用于维度值超过1000的情况*, 唯一维度值小于1000的维度上的topN在秩和聚合上都可以被认为是精确的。
|
||
|
||
阈值可以通过服务参数`druid.query.topN.minTopNThreshold`从默认值1000修改,它需要重新启动服务才能生效,或者在查询上下文中设置`minTopNThreshold`,该查询上下文对每个查询生效。
|
||
|
||
如果您想要一个高基数、均匀分布维度的前100个维度按某个低基数、均匀分布的维度排序,那么您可能会得到丢失数据的聚合。
|
||
|
||
换言之,topN的最佳用例是当您能够确信总体结果一致地位于顶层时。例如,如果某个特定站点的ID在某个指标中每天每小时都在前10位,那么它可能会在多天内精确到topN。但是,如果一个站点在任何给定的小时内几乎不在前1000名之内,但在整个查询粒度上却在前500名(例如:一个站点在数据集中获得高度一致的流量,并且站点具有高度周期性的数据),则top500查询可能没有该特定站点的确切排名,对于那个特定站点的聚合可能并不准确。
|
||
|
||
在继续本节之前,请考虑是否确实需要确切的结果。获得准确的结果是一个非常耗费资源的过程。对于绝大多数"有用"的数据结果,近似topN算法提供了足够的精度。
|
||
|
||
如果用户希望在一个维度上获得精确的排名和精确的topN聚合,那么应该发出groupBy查询并自行对结果进行排序。对于高基数维,这在计算上非常昂贵。
|
||
|
||
如果用户能够容忍超过1000个唯一值的维度上的近似秩topN,但需要精确的聚合,则可以发出两个查询。一个用于获取近似的topN维度值,另一个具有维度选择过滤器的topN只使用第一个的topN结果。
|
||
|
||
#### 首次查询的示例
|
||
|
||
```json
|
||
{
|
||
"aggregations": [
|
||
{
|
||
"fieldName": "L_QUANTITY_longSum",
|
||
"name": "L_QUANTITY_",
|
||
"type": "longSum"
|
||
}
|
||
],
|
||
"dataSource": "tpch_year",
|
||
"dimension":"l_orderkey",
|
||
"granularity": "all",
|
||
"intervals": [
|
||
"1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z"
|
||
],
|
||
"metric": "L_QUANTITY_",
|
||
"queryType": "topN",
|
||
"threshold": 2
|
||
}
|
||
```
|
||
|
||
#### 第二次查询的示例
|
||
|
||
```json
|
||
{
|
||
"aggregations": [
|
||
{
|
||
"fieldName": "L_TAX_doubleSum",
|
||
"name": "L_TAX_",
|
||
"type": "doubleSum"
|
||
},
|
||
{
|
||
"fieldName": "L_DISCOUNT_doubleSum",
|
||
"name": "L_DISCOUNT_",
|
||
"type": "doubleSum"
|
||
},
|
||
{
|
||
"fieldName": "L_EXTENDEDPRICE_doubleSum",
|
||
"name": "L_EXTENDEDPRICE_",
|
||
"type": "doubleSum"
|
||
},
|
||
{
|
||
"fieldName": "L_QUANTITY_longSum",
|
||
"name": "L_QUANTITY_",
|
||
"type": "longSum"
|
||
},
|
||
{
|
||
"name": "count",
|
||
"type": "count"
|
||
}
|
||
],
|
||
"dataSource": "tpch_year",
|
||
"dimension":"l_orderkey",
|
||
"filter": {
|
||
"fields": [
|
||
{
|
||
"dimension": "l_orderkey",
|
||
"type": "selector",
|
||
"value": "103136"
|
||
},
|
||
{
|
||
"dimension": "l_orderkey",
|
||
"type": "selector",
|
||
"value": "1648672"
|
||
}
|
||
],
|
||
"type": "or"
|
||
},
|
||
"granularity": "all",
|
||
"intervals": [
|
||
"1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z"
|
||
],
|
||
"metric": "L_QUANTITY_",
|
||
"queryType": "topN",
|
||
"threshold": 2
|
||
}
|
||
``` |