151 lines
5.6 KiB
Markdown
151 lines
5.6 KiB
Markdown
<!-- toc -->
|
||
|
||
<script async src="https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js"></script>
|
||
<ins class="adsbygoogle"
|
||
style="display:block; text-align:center;"
|
||
data-ad-layout="in-article"
|
||
data-ad-format="fluid"
|
||
data-ad-client="ca-pub-8828078415045620"
|
||
data-ad-slot="7586680510"></ins>
|
||
<script>
|
||
(adsbygoogle = window.adsbygoogle || []).push({});
|
||
</script>
|
||
|
||
## Timeseries查询
|
||
|
||
> [!WARNING]
|
||
> Apache Druid支持两种查询语言: [Druid SQL](druidsql.md) 和 [原生查询](makeNativeQueries.md)。该文档描述了原生查询中的一种查询方式。 对于Druid SQL中使用的该种类型的信息,可以参考 [SQL文档](druidsql.md)。
|
||
|
||
该类型的查询将会得到一个时间序列的查询结果,返回的是一个JSON对象数组,数组中的每一个对象表示被Timeseries查询所查的值。
|
||
|
||
一个Timeseries查询的实例如下:
|
||
|
||
```json
|
||
{
|
||
"queryType": "timeseries",
|
||
"dataSource": "sample_datasource",
|
||
"granularity": "day",
|
||
"descending": "true",
|
||
"filter": {
|
||
"type": "and",
|
||
"fields": [
|
||
{ "type": "selector", "dimension": "sample_dimension1", "value": "sample_value1" },
|
||
{ "type": "or",
|
||
"fields": [
|
||
{ "type": "selector", "dimension": "sample_dimension2", "value": "sample_value2" },
|
||
{ "type": "selector", "dimension": "sample_dimension3", "value": "sample_value3" }
|
||
]
|
||
}
|
||
]
|
||
},
|
||
"aggregations": [
|
||
{ "type": "longSum", "name": "sample_name1", "fieldName": "sample_fieldName1" },
|
||
{ "type": "doubleSum", "name": "sample_name2", "fieldName": "sample_fieldName2" }
|
||
],
|
||
"postAggregations": [
|
||
{ "type": "arithmetic",
|
||
"name": "sample_divide",
|
||
"fn": "/",
|
||
"fields": [
|
||
{ "type": "fieldAccess", "name": "postAgg__sample_name1", "fieldName": "sample_name1" },
|
||
{ "type": "fieldAccess", "name": "postAgg__sample_name2", "fieldName": "sample_name2" }
|
||
]
|
||
}
|
||
],
|
||
"intervals": [ "2012-01-01T00:00:00.000/2012-01-03T00:00:00.000" ]
|
||
}
|
||
```
|
||
|
||
时间序列查询主要包括7个主要部分:
|
||
|
||
| 属性 | 描述 | 是否必须 |
|
||
|-|-|-|
|
||
| `queryType` | 该字符串总是"timeseries"; 该字段告诉Apache Druid如何去解释这个查询 | 是 |
|
||
| `dataSource` | 用来标识查询的的字符串或者对象,与关系型数据库中的表类似。查看[数据源](datasource.md)可以获得更多信息 | 是 |
|
||
| `descending` | 是否对结果集进行降序排序,默认是`false`, 也就是升序排列 | 否 |
|
||
| `intervals` | ISO-8601格式的JSON对象,定义了要查询的时间范围 | 是 |
|
||
| `granularity` | 定义了查询结果的粒度,参见 [Granularity](granularity.md) | 是 |
|
||
| `filter` | 参见 [Filters](filters.md) | 否 |
|
||
| `aggregations` | 参见 [聚合](Aggregations.md)| 否 |
|
||
| `postAggregations` | 参见[Post Aggregations](postaggregation.md) | 否 |
|
||
| `limit` | 限制返回结果数量的整数值,默认是unlimited | 否 |
|
||
| `context` | 可以被用来修改查询行为,包括 [Grand Total](#grand-total共计) 和 [Zero-filling](#zero-filling0填充)。详情可以看 [上下文参数](query-context.md)部分中的所有参数类型 | 否 |
|
||
|
||
为了将所有数据集中起来,上面的查询将从"sample_datasource"表返回2个数据点,在 2012-01-01 和 2012-01-03 期间每天一个。每个数据点将是sample_fieldName1的longSum、sample_fieldName2的doubleSum以及sample_fieldName1除以sample_fieldName2的double结果。输出如下:
|
||
|
||
```json
|
||
[
|
||
{
|
||
"timestamp": "2012-01-01T00:00:00.000Z",
|
||
"result": { "sample_name1": <some_value>, "sample_name2": <some_value>, "sample_divide": <some_value> }
|
||
},
|
||
{
|
||
"timestamp": "2012-01-02T00:00:00.000Z",
|
||
"result": { "sample_name1": <some_value>, "sample_name2": <some_value>, "sample_divide": <some_value> }
|
||
}
|
||
]
|
||
```
|
||
|
||
### Grand Total(共计)
|
||
|
||
Druid可以在时间序列查询的结果集中增加一个额外的"总计"行,通过在上下文中增加 `"grandTotal":true`来启用该功能,例如:
|
||
|
||
```json
|
||
{
|
||
"queryType": "timeseries",
|
||
"dataSource": "sample_datasource",
|
||
"intervals": [ "2012-01-01T00:00:00.000/2012-01-03T00:00:00.000" ],
|
||
"granularity": "day",
|
||
"aggregations": [
|
||
{ "type": "longSum", "name": "sample_name1", "fieldName": "sample_fieldName1" },
|
||
{ "type": "doubleSum", "name": "sample_name2", "fieldName": "sample_fieldName2" }
|
||
],
|
||
"context": {
|
||
"grandTotal": true
|
||
}
|
||
}
|
||
```
|
||
|
||
总计行将显示为结果数组中的最后一行,并且没有时间戳。即使查询以"降序"模式运行,它也将是最后一行。总计行中的后聚合将基于总计聚合计算。
|
||
|
||
### Zero-filling(0填充)
|
||
|
||
Timeseries查询通常用零填充空的内部时间。例如,如果对间隔2012-01-01/2012-01-04发出"Day"粒度时间序列查询,并且2012-01-02不存在数据,则将收到:
|
||
|
||
```json
|
||
[
|
||
{
|
||
"timestamp": "2012-01-01T00:00:00.000Z",
|
||
"result": { "sample_name1": <some_value> }
|
||
},
|
||
{
|
||
"timestamp": "2012-01-02T00:00:00.000Z",
|
||
"result": { "sample_name1": 0 }
|
||
},
|
||
{
|
||
"timestamp": "2012-01-03T00:00:00.000Z",
|
||
"result": { "sample_name1": <some_value> }
|
||
}
|
||
]
|
||
```
|
||
|
||
完全位于数据间隔之外的时间不是零填充的。
|
||
|
||
可以使用上下文标志"skipEmptyBuckets"禁用所有零填充。在此模式下,将从结果中省略2012-01-02的数据点。
|
||
|
||
设置了此上下文标志的查询如下所示:
|
||
|
||
```json
|
||
{
|
||
"queryType": "timeseries",
|
||
"dataSource": "sample_datasource",
|
||
"granularity": "day",
|
||
"aggregations": [
|
||
{ "type": "longSum", "name": "sample_name1", "fieldName": "sample_fieldName1" }
|
||
],
|
||
"intervals": [ "2012-01-01T00:00:00.000/2012-01-04T00:00:00.000" ],
|
||
"context" : {
|
||
"skipEmptyBuckets": "true"
|
||
}
|
||
}
|
||
``` |