druid-docs-cn/Querying/timeseriesquery.md

139 lines
5.2 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!-- toc -->
## Timeseries查询
> [!WARNING]
> Apache Druid支持两种查询语言 [Druid SQL](druidsql.md) 和 [原生查询](makeNativeQueries.md)。该文档描述了原生查询中的一种查询方式。 对于Druid SQL中使用的该种类型的信息可以参考 [SQL文档](druidsql.md)。
该类型的查询将会得到一个时间序列的查询结果返回的是一个JSON对象数组数组中的每一个对象表示被Timeseries查询所查的值。
一个Timeseries查询的实例如下
```json
{
"queryType": "timeseries",
"dataSource": "sample_datasource",
"granularity": "day",
"descending": "true",
"filter": {
"type": "and",
"fields": [
{ "type": "selector", "dimension": "sample_dimension1", "value": "sample_value1" },
{ "type": "or",
"fields": [
{ "type": "selector", "dimension": "sample_dimension2", "value": "sample_value2" },
{ "type": "selector", "dimension": "sample_dimension3", "value": "sample_value3" }
]
}
]
},
"aggregations": [
{ "type": "longSum", "name": "sample_name1", "fieldName": "sample_fieldName1" },
{ "type": "doubleSum", "name": "sample_name2", "fieldName": "sample_fieldName2" }
],
"postAggregations": [
{ "type": "arithmetic",
"name": "sample_divide",
"fn": "/",
"fields": [
{ "type": "fieldAccess", "name": "postAgg__sample_name1", "fieldName": "sample_name1" },
{ "type": "fieldAccess", "name": "postAgg__sample_name2", "fieldName": "sample_name2" }
]
}
],
"intervals": [ "2012-01-01T00:00:00.000/2012-01-03T00:00:00.000" ]
}
```
时间序列查询主要包括7个主要部分
| 属性 | 描述 | 是否必须 |
|-|-|-|
| `queryType` | 该字符串总是"timeseries"; 该字段告诉Apache Druid如何去解释这个查询 | 是 |
| `dataSource` | 用来标识查询的的字符串或者对象,与关系型数据库中的表类似。查看[数据源](datasource.md)可以获得更多信息 | 是 |
| `descending` | 是否对结果集进行降序排序,默认是`false`, 也就是升序排列 | 否 |
| `intervals` | ISO-8601格式的JSON对象定义了要查询的时间范围 | 是 |
| `granularity` | 定义了查询结果的粒度,参见 [Granularity](granularity.md) | 是 |
| `filter` | 参见 [Filters](filters.md) | 否 |
| `aggregations` | 参见 [聚合](Aggregations.md)| 否 |
| `postAggregations` | 参见[Post Aggregations](postaggregation.md) | 否 |
| `limit` | 限制返回结果数量的整数值默认是unlimited | 否 |
| `context` | 可以被用来修改查询行为,包括 [Grand Total](#grand-total共计) 和 [Zero-filling](#zero-filling0填充)。详情可以看 [上下文参数](query-context.md)部分中的所有参数类型 | 否 |
为了将所有数据集中起来,上面的查询将从"sample_datasource"表返回2个数据点在 2012-01-01 和 2012-01-03 期间每天一个。每个数据点将是sample_fieldName1的longSum、sample_fieldName2的doubleSum以及sample_fieldName1除以sample_fieldName2的double结果。输出如下
```json
[
{
"timestamp": "2012-01-01T00:00:00.000Z",
"result": { "sample_name1": <some_value>, "sample_name2": <some_value>, "sample_divide": <some_value> }
},
{
"timestamp": "2012-01-02T00:00:00.000Z",
"result": { "sample_name1": <some_value>, "sample_name2": <some_value>, "sample_divide": <some_value> }
}
]
```
### Grand Total(共计)
Druid可以在时间序列查询的结果集中增加一个额外的"总计"行,通过在上下文中增加 `"grandTotal":true`来启用该功能,例如:
```json
{
"queryType": "timeseries",
"dataSource": "sample_datasource",
"intervals": [ "2012-01-01T00:00:00.000/2012-01-03T00:00:00.000" ],
"granularity": "day",
"aggregations": [
{ "type": "longSum", "name": "sample_name1", "fieldName": "sample_fieldName1" },
{ "type": "doubleSum", "name": "sample_name2", "fieldName": "sample_fieldName2" }
],
"context": {
"grandTotal": true
}
}
```
总计行将显示为结果数组中的最后一行,并且没有时间戳。即使查询以"降序"模式运行,它也将是最后一行。总计行中的后聚合将基于总计聚合计算。
### Zero-filling(0填充)
Timeseries查询通常用零填充空的内部时间。例如如果对间隔2012-01-01/2012-01-04发出"Day"粒度时间序列查询并且2012-01-02不存在数据则将收到
```json
[
{
"timestamp": "2012-01-01T00:00:00.000Z",
"result": { "sample_name1": <some_value> }
},
{
"timestamp": "2012-01-02T00:00:00.000Z",
"result": { "sample_name1": 0 }
},
{
"timestamp": "2012-01-03T00:00:00.000Z",
"result": { "sample_name1": <some_value> }
}
]
```
完全位于数据间隔之外的时间不是零填充的。
可以使用上下文标志"skipEmptyBuckets"禁用所有零填充。在此模式下将从结果中省略2012-01-02的数据点。
设置了此上下文标志的查询如下所示:
```json
{
"queryType": "timeseries",
"dataSource": "sample_datasource",
"granularity": "day",
"aggregations": [
{ "type": "longSum", "name": "sample_name1", "fieldName": "sample_fieldName1" }
],
"intervals": [ "2012-01-01T00:00:00.000/2012-01-04T00:00:00.000" ],
"context" : {
"skipEmptyBuckets": "true"
}
}
```