3.0 KiB
独立服务器部署
Druid 包含有一组可用的参考配置和用于单机部署的启动脚本:
nano-quickstart
micro-quickstart
small
medium
large
xlarge
micro-quickstart
适合于笔记本电脑等小型计算机,主要用于能够快速评估 Druid 的使用场景。
The nano-quickstart
is an even smaller configuration, targeting a machine with 1 CPU and 4GiB memory. It is meant for limited evaluations in resource constrained environments, such as small Docker containers.
The other configurations are intended for general use single-machine deployments. They are sized for hardware roughly based on Amazon's i3 series of EC2 instances.
The startup scripts for these example configurations run a single ZK instance along with the Druid services. You can choose to deploy ZK separately as well.
The example configurations run the Druid Coordinator and Overlord together in a single process using the optional configuration druid.coordinator.asOverlord.enabled=true
, described in the Coordinator configuration documentation.
While example configurations are provided for very large single machines, at higher scales we recommend running Druid in a clustered deployment, for fault-tolerance and reduced resource contention.
Nano-Quickstart: 1 CPU, 4GiB RAM
- 启动命令:
bin/start-nano-quickstart
- 配置目录:
conf/druid/single-server/nano-quickstart
Micro-Quickstart: 4 CPU, 16GiB RAM
- 启动命令:
bin/start-micro-quickstart
- 配置目录:
conf/druid/single-server/micro-quickstart
Small: 8 CPU, 64GiB RAM (~i3.2xlarge)
- 启动命令:
bin/start-small
- 配置目录:
conf/druid/single-server/small
Medium: 16 CPU, 128GiB RAM (~i3.4xlarge)
- 启动命令:
bin/start-medium
- 配置目录:
conf/druid/single-server/medium
Large: 32 CPU, 256GiB RAM (~i3.8xlarge)
- 启动命令:
bin/start-large
- 配置目录:
conf/druid/single-server/large
X-Large: 64 CPU, 512GiB RAM (~i3.16xlarge)
- 启动命令:
bin/start-xlarge
- 配置目录:
conf/druid/single-server/xlarge
micro-quickstart
适合于笔记本电脑等小型机器,旨在用于快速评估测试使用场景。
nano-quickstart
是一种甚至更小的配置,目标是具有1个CPU和4GB内存的计算机。它旨在在资源受限的环境(例如小型Docker容器)中进行有限的评估测试。
其他配置旨在用于一般用途的单机部署,它们的大小适合大致基于亚马逊i3系列EC2实例的硬件。
这些示例配置的启动脚本与Druid服务一起运行单个ZK实例,您也可以选择单独部署ZK。
通过Coordinator配置文档中描述的可选配置druid.coordinator.asOverlord.enabled = true
可以在单个进程中同时运行Druid Coordinator和Overlord。
虽然为大型单台计算机提供了示例配置,但在更高规模下,我们建议在集群部署中运行Druid,以实现容错和减少资源争用。