Final bits of feedback
Signed-off-by: Naarcha-AWS <naarcha@amazon.com>
This commit is contained in:
parent
adbf630735
commit
ffa9c14031
|
@ -57,9 +57,9 @@ POST /_plugins/_ml/_train/kmeans
|
|||
|
||||
The training process supports multi-threads, but the number of threads should be less than half of the number of CPUs.
|
||||
|
||||
## Linear Regression
|
||||
## Linear regression
|
||||
|
||||
Linear Regression maps the linear relationship between inputs and outputs. In ML Commons, the linear regression algorithm is adopted from the public machine learning library [Tribuo](https://tribuo.org/), which offers multidimensional linear regression models. The model supports the linear optimizer in training, including popular approaches like Linear Decay, SQRT_DECAY, [ADA](http://chrome-extension//gphandlahdpffmccakmbngmbjnjiiahp/https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf), [ADAM](https://tribuo.org/learn/4.1/javadoc/org/tribuo/math/optimisers/Adam.html), and [RMS_DROP](https://tribuo.org/learn/4.1/javadoc/org/tribuo/math/optimisers/RMSProp.html).
|
||||
Linear regression maps the linear relationship between inputs and outputs. In ML Commons, the linear regression algorithm is adopted from the public machine learning library [Tribuo](https://tribuo.org/), which offers multidimensional linear regression models. The model supports the linear optimizer in training, including popular approaches like Linear Decay, SQRT_DECAY, [ADA](http://chrome-extension//gphandlahdpffmccakmbngmbjnjiiahp/https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf), [ADAM](https://tribuo.org/learn/4.1/javadoc/org/tribuo/math/optimisers/Adam.html), and [RMS_DROP](https://tribuo.org/learn/4.1/javadoc/org/tribuo/math/optimisers/RMSProp.html).
|
||||
|
||||
### Parameters
|
||||
|
||||
|
@ -172,6 +172,8 @@ anomaly_score_threshold | double | The threshold of the anomaly score | 1.0
|
|||
|
||||
#### Fit RCF
|
||||
|
||||
All parameters are optional except `time_field`.
|
||||
|
||||
Parameter | Type | Description | Default Value
|
||||
:--- |:--- | :--- | :---
|
||||
number_of_trees | integer | The number of trees in the forest | 30
|
||||
|
@ -202,6 +204,8 @@ The Anomaly Localization algorithm finds subset level-information for aggregate
|
|||
|
||||
### Parameters
|
||||
|
||||
All parameters are required except `filter_query` and `anomaly_start`.
|
||||
|
||||
Parameter | Type | Description | Default Value
|
||||
:--- | :--- | :--- | :---
|
||||
index_name | String | The data collection to analyze | N/A
|
||||
|
@ -217,7 +221,7 @@ anomaly_star | QueryBuilder | (Optional) The time after which the data will be a
|
|||
|
||||
### Example
|
||||
|
||||
The following example executes Anomaly Localization against an RCA index. The API responds with 10 aggregations and gives the sum of the contribution and base values per aggregation, every
|
||||
The following example executes Anomaly Localization against an RCA index.
|
||||
|
||||
**Request**
|
||||
|
||||
|
|
|
@ -232,7 +232,7 @@ The API returns the following:
|
|||
|
||||
## Predict
|
||||
|
||||
ML Commons can predict new data with your trained model either from indexed data or a data frame. To use the Predict API, the model_id is required.
|
||||
ML Commons can predict new data with your trained model either from indexed data or a data frame. To use the Predict API, the `model_id` is required.
|
||||
|
||||
```json
|
||||
POST /_plugins/_ml/_predict/<algorithm_name>/<model_id>
|
||||
|
|
Loading…
Reference in New Issue