opensearch-docs-cn/_ml-commons-plugin/pretrained-models.md
Naarcha-AWS 95d117ffb0
Add Connectors and ML updates for 2.9 (#4554)
* Add Connectors and ML updates for 2.9

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

* Fix code block

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

* Add Connectors and ML updates for 2.9

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

* Fix code block

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

* Add connector settings and examples

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

* Add GA warning

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

* Add final experimental warning

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

* Address tech review. Fix typos

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

* Fix bad link. Add next steps section

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

* Fix typo

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

* Update cluster-settings.md

Signed-off-by: Naarcha-AWS <97990722+Naarcha-AWS@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com>
Signed-off-by: Naarcha-AWS <97990722+Naarcha-AWS@users.noreply.github.com>

* Apply suggestions from code review

Signed-off-by: Naarcha-AWS <97990722+Naarcha-AWS@users.noreply.github.com>

* Apply suggestions from code review

Signed-off-by: Naarcha-AWS <97990722+Naarcha-AWS@users.noreply.github.com>

* Apply suggestions from code review

Signed-off-by: Naarcha-AWS <97990722+Naarcha-AWS@users.noreply.github.com>

* Update _ml-commons-plugin/connectors.md

Signed-off-by: Naarcha-AWS <97990722+Naarcha-AWS@users.noreply.github.com>

* Change cluster values for boolean. Fix typo.

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

* Apply suggestions from code review

Co-authored-by: Nathan Bower <nbower@amazon.com>
Signed-off-by: Naarcha-AWS <97990722+Naarcha-AWS@users.noreply.github.com>

* Fix cluser settings

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

* Add missing config options. More technical feedback.

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

* Adjust cluster setting description.

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

* Add updated ChatGPT example

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

* Add info and example for internal connector.

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

* One last adjustment.

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

* Apply suggestions from code review

Co-authored-by: Nathan Bower <nbower@amazon.com>
Signed-off-by: Naarcha-AWS <97990722+Naarcha-AWS@users.noreply.github.com>

* Fix dead link

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

* Fix one last comment.

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

* change ordered list to numbered.

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

---------

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>
Signed-off-by: Naarcha-AWS <97990722+Naarcha-AWS@users.noreply.github.com>
Co-authored-by: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com>
Co-authored-by: Nathan Bower <nbower@amazon.com>
2023-07-19 16:35:46 -07:00

9.5 KiB

layout title parent nav_order
default Pretrained models ML framework 120

Pretrained models were taken out of experimental status and released to General Availability in OpenSearch 2.9.
{: .warning}

Pretrained models

The ML framework supports a variety of open-source pretrained models that can assist with a range of machine learning (ML) search and analytics use cases.

Uploading pretrained models

To use a pretrained model in your OpenSearch cluster:

  1. Select the model you want to upload. For a list of pretrained models, see supported pretrained models.
  2. Upload the model using the upload API. Because a pretrained model originates from the ML Commons model repository, you only need to provide the name, version, and model_format in the upload API request.
POST /_plugins/_ml/models/_upload
{
  "name": "huggingface/sentence-transformers/all-MiniLM-L12-v2",
  "version": "1.0.1",
  "model_format": "TORCH_SCRIPT"
}

For more information about how to upload and use ML models, see ML Framework.

Supported pretrained models

The ML Framework supports the following models, categorized by type. All models are traced from Hugging Face. Although models with the same type will have similar use cases, each model has a different model size and performs differently depending on your cluster. For a performance comparison of some pretrained models, see the sbert documentation.

Sentence transformers

Sentence transformer models map sentences and paragraphs across a dimensional dense vector space. The number of vectors depends on the model. Use these models for use cases such as clustering and semantic search.

The following table provides a list of sentence transformer models and artifact links to download them. As of OpenSearch 2.6, all artifacts are set to version 1.0.1.

| Model name | Vector dimensions | Auto-truncation | Torchscript artifact | ONNX artifact | |---|---|---|---| | sentence-transformers/all-distilroberta-v1 | 768-dimensional dense vector space. | Yes | - model_url
- config_url | - model_url
- config_url | | sentence-transformers/all-MiniLM-L6-v2 | 384-dimensional dense vector space. | Yes | - model_url
- config_url | - model_url
- config_url | | sentence-transformers/all-MiniLM-L12-v2 | 384-dimensional dense vector space. | Yes | - model_url
- config_url | - model_url
- config_url | | sentence-transformers/all-mpnet-base-v2 | 768-dimensional dense vector space. | Yes | - model_url
- config_url | - model_url
- config_url | | sentence-transformers/msmarco-distilbert-base-tas-b | 768-dimensional dense vector space. Optimized for semantic search. | No | - model_url
- config_url | - model_url
- config_url | | sentence-transformers/multi-qa-MiniLM-L6-cos-v1 | 384 dimensional dense vector space. Designed for semantic search and trained on 215 million question/answer pairs. | Yes | - model_url
- config_url | - model_url
- config_url | | sentence-transformers/multi-qa-mpnet-base-dot-v1 | 384 dimensional dense vector space. | Yes | - model_url
- config_url | - model_url
- config_url | | sentence-transformers/paraphrase-MiniLM-L3-v2 | 384-dimensional dense vector space. | Yes | - model_url
- config_url | - model_url
- config_url | | sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 | 384-dimensional dense vector space. | Yes | - model_url
- config_url | - model_url
- config_url |