* Add Connectors and ML updates for 2.9 Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Fix code block Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Add Connectors and ML updates for 2.9 Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Fix code block Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Add connector settings and examples Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Add GA warning Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Add final experimental warning Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Address tech review. Fix typos Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Fix bad link. Add next steps section Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Fix typo Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Update cluster-settings.md Signed-off-by: Naarcha-AWS <97990722+Naarcha-AWS@users.noreply.github.com> * Apply suggestions from code review Co-authored-by: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com> Signed-off-by: Naarcha-AWS <97990722+Naarcha-AWS@users.noreply.github.com> * Apply suggestions from code review Signed-off-by: Naarcha-AWS <97990722+Naarcha-AWS@users.noreply.github.com> * Apply suggestions from code review Signed-off-by: Naarcha-AWS <97990722+Naarcha-AWS@users.noreply.github.com> * Apply suggestions from code review Signed-off-by: Naarcha-AWS <97990722+Naarcha-AWS@users.noreply.github.com> * Update _ml-commons-plugin/connectors.md Signed-off-by: Naarcha-AWS <97990722+Naarcha-AWS@users.noreply.github.com> * Change cluster values for boolean. Fix typo. Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Apply suggestions from code review Co-authored-by: Nathan Bower <nbower@amazon.com> Signed-off-by: Naarcha-AWS <97990722+Naarcha-AWS@users.noreply.github.com> * Fix cluser settings Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Add missing config options. More technical feedback. Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Adjust cluster setting description. Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Add updated ChatGPT example Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Add info and example for internal connector. Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * One last adjustment. Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Apply suggestions from code review Co-authored-by: Nathan Bower <nbower@amazon.com> Signed-off-by: Naarcha-AWS <97990722+Naarcha-AWS@users.noreply.github.com> * Fix dead link Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Fix one last comment. Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * change ordered list to numbered. Signed-off-by: Naarcha-AWS <naarcha@amazon.com> --------- Signed-off-by: Naarcha-AWS <naarcha@amazon.com> Signed-off-by: Naarcha-AWS <97990722+Naarcha-AWS@users.noreply.github.com> Co-authored-by: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com> Co-authored-by: Nathan Bower <nbower@amazon.com>
9.5 KiB
layout | title | parent | nav_order |
---|---|---|---|
default | Pretrained models | ML framework | 120 |
Pretrained models were taken out of experimental status and released to General Availability in OpenSearch 2.9.
{: .warning}
Pretrained models
The ML framework supports a variety of open-source pretrained models that can assist with a range of machine learning (ML) search and analytics use cases.
Uploading pretrained models
To use a pretrained model in your OpenSearch cluster:
- Select the model you want to upload. For a list of pretrained models, see supported pretrained models.
- Upload the model using the upload API. Because a pretrained model originates from the ML Commons model repository, you only need to provide the
name
,version
, andmodel_format
in the upload API request.
POST /_plugins/_ml/models/_upload
{
"name": "huggingface/sentence-transformers/all-MiniLM-L12-v2",
"version": "1.0.1",
"model_format": "TORCH_SCRIPT"
}
For more information about how to upload and use ML models, see ML Framework.
Supported pretrained models
The ML Framework supports the following models, categorized by type. All models are traced from Hugging Face. Although models with the same type will have similar use cases, each model has a different model size and performs differently depending on your cluster. For a performance comparison of some pretrained models, see the sbert documentation.
Sentence transformers
Sentence transformer models map sentences and paragraphs across a dimensional dense vector space. The number of vectors depends on the model. Use these models for use cases such as clustering and semantic search.
The following table provides a list of sentence transformer models and artifact links to download them. As of OpenSearch 2.6, all artifacts are set to version 1.0.1.
| Model name | Vector dimensions | Auto-truncation | Torchscript artifact | ONNX artifact |
|---|---|---|---|
| sentence-transformers/all-distilroberta-v1
| 768-dimensional dense vector space. | Yes | - model_url
- config_url | - model_url
- config_url |
| sentence-transformers/all-MiniLM-L6-v2
| 384-dimensional dense vector space. | Yes | - model_url
- config_url | - model_url
- config_url |
| sentence-transformers/all-MiniLM-L12-v2
| 384-dimensional dense vector space. | Yes | - model_url
- config_url | - model_url
- config_url |
| sentence-transformers/all-mpnet-base-v2
| 768-dimensional dense vector space. | Yes | - model_url
- config_url | - model_url
- config_url |
| sentence-transformers/msmarco-distilbert-base-tas-b
| 768-dimensional dense vector space. Optimized for semantic search. | No | - model_url
- config_url | - model_url
- config_url |
| sentence-transformers/multi-qa-MiniLM-L6-cos-v1
| 384 dimensional dense vector space. Designed for semantic search and trained on 215 million question/answer pairs. | Yes | - model_url
- config_url | - model_url
- config_url |
| sentence-transformers/multi-qa-mpnet-base-dot-v1
| 384 dimensional dense vector space. | Yes | - model_url
- config_url | - model_url
- config_url |
| sentence-transformers/paraphrase-MiniLM-L3-v2
| 384-dimensional dense vector space. | Yes | - model_url
- config_url | - model_url
- config_url |
| sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
| 384-dimensional dense vector space. | Yes | - model_url
- config_url | - model_url
- config_url |