26 KiB
layout | title | nav_order | grand_parent | parent |
---|---|---|---|---|
default | Anatomy of a workload | 15 | User guide | Understanding workloads |
Anatomy of a workload
All workloads contain the following files and directories:
- workload.json: Contains all of the workload settings.
- index.json: Contains the document mappings and parameters as well as index settings.
- files.txt: Contains the data corpora file names.
- _test-procedures: Most workloads contain only one default test procedure, which is configured in
default.json
. - _operations: Contains all of the operations used in test procedures.
- workload.py: Adds more dynamic functionality to the test.
workload.json
The following example workload shows all of the essential elements needed to create a workload.json
file. You can run this workload in your own benchmark configuration to understand how all of the elements work together:
{
"description": "Tutorial benchmark for OpenSearch Benchmark",
"indices": [
{
"name": "movies",
"body": "index.json"
}
],
"corpora": [
{
"name": "movies",
"documents": [
{
"source-file": "movies-documents.json",
"document-count": 11658903, # Fetch document count from command line
"uncompressed-bytes": 1544799789 # Fetch uncompressed bytes from command line
}
]
}
],
"schedule": [
{
"operation": {
"operation-type": "create-index"
}
},
{
"operation": {
"operation-type": "cluster-health",
"request-params": {
"wait_for_status": "green"
},
"retry-until-success": true
}
},
{
"operation": {
"operation-type": "bulk",
"bulk-size": 5000
},
"warmup-time-period": 120,
"clients": 8
},
{
"operation": {
"name": "query-match-all",
"operation-type": "search",
"body": {
"query": {
"match_all": {}
}
}
},
"iterations": 1000,
"target-throughput": 100
}
]
}
A workload usually includes the following elements:
- indices: Defines the relevant indexes and index templates used for the workload.
- corpora: Defines all document corpora used for the workload.
schedule
: Defines operations and the order in which the operations run inline. Alternatively, you can useoperations
to group operations and thetest_procedures
parameter to specify the order of operations.operations
: Optional. Describes which operations are available for the workload and how they are parameterized.
Indices
To create an index, specify its name
. To add definitions to your index, use the body
option and point it to the JSON file containing the index definitions. For more information, see Indices.
Corpora
The corpora
element requires the name of the index containing the document corpus, for example, movies
, and a list of parameters that define the document corpora. This list includes the following parameters:
source-file
: The file name that contains the workload's corresponding documents. When using OpenSearch Benchmark locally, documents are contained in a JSON file. When providing abase_url
, use a compressed file format:.zip
,.bz2
,.zst
,.gz
,.tar
,.tar.gz
,.tgz
, or.tar.bz2
. The compressed file must include one JSON file containing the name.document-count
: The number of documents in thesource-file
, which determines which client indexes correlate to which parts of the document corpus. Each N client is assigned an Nth of the document corpus to ingest into the test cluster. When using a source that contains a document with a parent-child relationship, specify the number of parent documents.uncompressed-bytes
: The size, in bytes, of the source file after decompression, indicating how much disk space the decompressed source file needs.compressed-bytes
: The size, in bytes, of the source file before decompression. This can help you assess the amount of time needed for the cluster to ingest documents.
Operations
The operations
element lists the OpenSearch API operations performed by the workload. For example, you can list an operation named create-index
that creates an index in the benchmark cluster to which OpenSearch Benchmark can write documents. Operations are usually listed inside of the schedule
element.
Schedule
The schedule
element contains a list of operations that are run in a specified order, as shown in the following JSON example:
"schedule": [
{
"operation": {
"operation-type": "create-index"
}
},
{
"operation": {
"operation-type": "cluster-health",
"request-params": {
"wait_for_status": "green"
},
"retry-until-success": true
}
},
{
"operation": {
"operation-type": "bulk",
"bulk-size": 5000
},
"warmup-time-period": 120,
"clients": 8
},
{
"operation": {
"name": "query-match-all",
"operation-type": "search",
"body": {
"query": {
"match_all": {}
}
}
},
"iterations": 1000,
"target-throughput": 100
}
]
}
According to this schedule
, the actions will run in the following order:
- The
create-index
operation creates an index. The index remains empty until thebulk
operation adds documents with benchmarked data. - The
cluster-health
operation assesses the cluster's health before running the workload. In the JSON example, the workload waits until the cluster's health status isgreen
.- The
bulk
operation runs thebulk
API to index5000
documents simultaneously. - Before benchmarking, the workload waits until the specified
warmup-time-period
passes. In the JSON example, the warmup period is120
seconds.
- The
- The
clients
field defines the number of clients, in this example, eight, that will run the bulk indexing operation concurrently. - The
search
operation runs amatch_all
query to match all documents after they have been indexed by thebulk
API using the specified clients.- The
iterations
field defines the number of times each client runs thesearch
operation. The benchmark report automatically adjusts the percentile numbers based on this number. To generate a precise percentile, the benchmark needs to run at least 1,000 iterations. - The
target-throughput
field defines the number of requests per second that each client performs. When set, the setting can help reduce benchmark latency. For example, atarget-throughput
of 100 requests divided by 8 clients means that each client will issue 12 requests per second. For more information about how target throughput is defined in OpenSearch Benchmark, see Throughput and latency.
- The
index.json
The index.json
file defines the data mappings, indexing parameters, and index settings for workload documents during create-index
operations.
When OpenSearch Benchmark creates an index for the workload, it uses the index settings and mappings template in the index.json
file. Mappings in the index.json
file are based on the mappings of a single document from the workload's corpus, which is stored in the files.txt
file. The following is an example of the index.json
file for the nyc_taxis
workload. You can customize the fields, such as number_of_shards
, number_of_replicas
, query_cache_enabled
, and requests_cache_enabled
.
{
"settings": {
"index.number_of_shards": {% raw %}{{number_of_shards | default(1)}}{% endraw %},
"index.number_of_replicas": {% raw %}{{number_of_replicas | default(0)}}{% endraw %},
"index.queries.cache.enabled": {% raw %}{{query_cache_enabled | default(false) | tojson}}{% endraw %},
"index.requests.cache.enable": {% raw %}{{requests_cache_enabled | default(false) | tojson}}{% endraw %}
},
"mappings": {
"_source": {
"enabled": {% raw %}{{ source_enabled | default(true) | tojson }}{% endraw %}
},
"properties": {
"surcharge": {
"scaling_factor": 100,
"type": "scaled_float"
},
"dropoff_datetime": {
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss"
},
"trip_type": {
"type": "keyword"
},
"mta_tax": {
"scaling_factor": 100,
"type": "scaled_float"
},
"rate_code_id": {
"type": "keyword"
},
"passenger_count": {
"type": "integer"
},
"pickup_datetime": {
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss"
},
"tolls_amount": {
"scaling_factor": 100,
"type": "scaled_float"
},
"tip_amount": {
"type": "half_float"
},
"payment_type": {
"type": "keyword"
},
"extra": {
"scaling_factor": 100,
"type": "scaled_float"
},
"vendor_id": {
"type": "keyword"
},
"store_and_fwd_flag": {
"type": "keyword"
},
"improvement_surcharge": {
"scaling_factor": 100,
"type": "scaled_float"
},
"fare_amount": {
"scaling_factor": 100,
"type": "scaled_float"
},
"ehail_fee": {
"scaling_factor": 100,
"type": "scaled_float"
},
"cab_color": {
"type": "keyword"
},
"dropoff_location": {
"type": "geo_point"
},
"vendor_name": {
"type": "text"
},
"total_amount": {
"scaling_factor": 100,
"type": "scaled_float"
},
"trip_distance": {% raw %}{%- if trip_distance_mapping is defined %} {{ trip_distance_mapping | tojson }} {%- else %}{% endraw %} {
"scaling_factor": 100,
"type": "scaled_float"
}{% raw %}{%- endif %}{% endraw %},
"pickup_location": {
"type": "geo_point"
}
},
"dynamic": "strict"
}
}
files.txt
The files.txt
file lists the files that store the workload data, which are typically stored in a zipped JSON file.
_operations and _test-procedures
To make the workload more human-readable, _operations
and _test-procedures
are separated into two directories.
The _operations
directory contains a default.json
file that lists all of the supported operations that the test procedure can use. Some workloads, such as nyc_taxis
, contain an additional .json
file that lists feature-specific operations, such as snapshot
operations. The following JSON example shows a list of operations from the nyc_taxis
workload:
{
"name": "index",
"operation-type": "bulk",
"bulk-size": {% raw %}{{bulk_size | default(10000)}}{% endraw %},
"ingest-percentage": {% raw %}{{ingest_percentage | default(100)}}{% endraw %}
},
{
"name": "update",
"operation-type": "bulk",
"bulk-size": {% raw %}{{bulk_size | default(10000)}},
"ingest-percentage": {{ingest_percentage | default(100)}},
"conflicts": "{{conflicts | default('random')}}",
"on-conflict": "{{on_conflict | default('update')}}",
"conflict-probability": {{conflict_probability | default(25)}},
"recency": {{recency | default(0)}}{% endraw %}
},
{
"name": "wait-until-merges-finish",
"operation-type": "index-stats",
"index": "_all",
"condition": {
"path": "_all.total.merges.current",
"expected-value": 0
},
"retry-until-success": true,
"include-in-reporting": false
},
{
"name": "default",
"operation-type": "search",
"body": {
"query": {
"match_all": {}
}
}
},
{
"name": "range",
"operation-type": "search",
"body": {
"query": {
"range": {
"total_amount": {
"gte": 5,
"lt": 15
}
}
}
}
},
{
"name": "distance_amount_agg",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"bool": {
"filter": {
"range": {
"trip_distance": {
"lt": 50,
"gte": 0
}
}
}
}
},
"aggs": {
"distance_histo": {
"histogram": {
"field": "trip_distance",
"interval": 1
},
"aggs": {
"total_amount_stats": {
"stats": {
"field": "total_amount"
}
}
}
}
}
}
},
{
"name": "autohisto_agg",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"range": {
"dropoff_datetime": {
"gte": "01/01/2015",
"lte": "21/01/2015",
"format": "dd/MM/yyyy"
}
}
},
"aggs": {
"dropoffs_over_time": {
"auto_date_histogram": {
"field": "dropoff_datetime",
"buckets": 20
}
}
}
}
},
{
"name": "date_histogram_agg",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"range": {
"dropoff_datetime": {
"gte": "01/01/2015",
"lte": "21/01/2015",
"format": "dd/MM/yyyy"
}
}
},
"aggs": {
"dropoffs_over_time": {
"date_histogram": {
"field": "dropoff_datetime",
"calendar_interval": "day"
}
}
}
}
},
{
"name": "date_histogram_calendar_interval",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"range": {
"dropoff_datetime": {
"gte": "2015-01-01 00:00:00",
"lt": "2016-01-01 00:00:00"
}
}
},
"aggs": {
"dropoffs_over_time": {
"date_histogram": {
"field": "dropoff_datetime",
"calendar_interval": "month"
}
}
}
}
},
{
"name": "date_histogram_calendar_interval_with_tz",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"range": {
"dropoff_datetime": {
"gte": "2015-01-01 00:00:00",
"lt": "2016-01-01 00:00:00"
}
}
},
"aggs": {
"dropoffs_over_time": {
"date_histogram": {
"field": "dropoff_datetime",
"calendar_interval": "month",
"time_zone": "America/New_York"
}
}
}
}
},
{
"name": "date_histogram_fixed_interval",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"range": {
"dropoff_datetime": {
"gte": "2015-01-01 00:00:00",
"lt": "2016-01-01 00:00:00"
}
}
},
"aggs": {
"dropoffs_over_time": {
"date_histogram": {
"field": "dropoff_datetime",
"fixed_interval": "60d"
}
}
}
}
},
{
"name": "date_histogram_fixed_interval_with_tz",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"range": {
"dropoff_datetime": {
"gte": "2015-01-01 00:00:00",
"lt": "2016-01-01 00:00:00"
}
}
},
"aggs": {
"dropoffs_over_time": {
"date_histogram": {
"field": "dropoff_datetime",
"fixed_interval": "60d",
"time_zone": "America/New_York"
}
}
}
}
},
{
"name": "date_histogram_fixed_interval_with_metrics",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"range": {
"dropoff_datetime": {
"gte": "2015-01-01 00:00:00",
"lt": "2016-01-01 00:00:00"
}
}
},
"aggs": {
"dropoffs_over_time": {
"date_histogram": {
"field": "dropoff_datetime",
"fixed_interval": "60d"
},
"aggs": {
"total_amount": { "stats": { "field": "total_amount" } },
"tip_amount": { "stats": { "field": "tip_amount" } },
"trip_distance": { "stats": { "field": "trip_distance" } }
}
}
}
}
},
{
"name": "auto_date_histogram",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"range": {
"dropoff_datetime": {
"gte": "2015-01-01 00:00:00",
"lt": "2016-01-01 00:00:00"
}
}
},
"aggs": {
"dropoffs_over_time": {
"auto_date_histogram": {
"field": "dropoff_datetime",
"buckets": "12"
}
}
}
}
},
{
"name": "auto_date_histogram_with_tz",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"range": {
"dropoff_datetime": {
"gte": "2015-01-01 00:00:00",
"lt": "2016-01-01 00:00:00"
}
}
},
"aggs": {
"dropoffs_over_time": {
"auto_date_histogram": {
"field": "dropoff_datetime",
"buckets": "13",
"time_zone": "America/New_York"
}
}
}
}
},
{
"name": "auto_date_histogram_with_metrics",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"range": {
"dropoff_datetime": {
"gte": "2015-01-01 00:00:00",
"lt": "2016-01-01 00:00:00"
}
}
},
"aggs": {
"dropoffs_over_time": {
"auto_date_histogram": {
"field": "dropoff_datetime",
"buckets": "12"
},
"aggs": {
"total_amount": { "stats": { "field": "total_amount" } },
"tip_amount": { "stats": { "field": "tip_amount" } },
"trip_distance": { "stats": { "field": "trip_distance" } }
}
}
}
}
},
{
"name": "desc_sort_tip_amount",
"operation-type": "search",
"index": "nyc_taxis",
"body": {
"query": {
"match_all": {}
},
"sort" : [
{"tip_amount" : "desc"}
]
}
},
{
"name": "asc_sort_tip_amount",
"operation-type": "search",
"index": "nyc_taxis",
"body": {
"query": {
"match_all": {}
},
"sort" : [
{"tip_amount" : "asc"}
]
}
}
The _test-procedures
directory contains a default.json
file that sets the order of operations performed by the workload. Similar to the _operations
directory, the _test-procedures
directory can also contain feature-specific test procedures, such as searchable_snapshots.json
for nyc_taxis
. The following examples show the searchable snapshots test procedures for nyc_taxis
:
{
"name": "searchable-snapshot",
"description": "Measuring performance for Searchable Snapshot feature. Based on the default test procedure 'append-no-conflicts'.",
"schedule": [
{
"operation": "delete-index"
},
{
"operation": {
"operation-type": "create-index",
"settings": {% raw %}{%- if index_settings is defined %} {{ index_settings | tojson }} {%- else %}{
"index.codec": "best_compression",
"index.refresh_interval": "30s",
"index.translog.flush_threshold_size": "4g"
}{%- endif %}{% endraw %}
}
},
{
"name": "check-cluster-health",
"operation": {
"operation-type": "cluster-health",
"index": "nyc_taxis",
"request-params": {
"wait_for_status": {% raw %}"{{ cluster_health | default('green') }}"{% endraw %},
"wait_for_no_relocating_shards": "true"
},
"retry-until-success": true
}
},
{
"operation": "index",
"warmup-time-period": 240,
"clients": {% raw %}{{ bulk_indexing_clients | default(8) }},
"ignore-response-error-level": "{{ error_level | default('non-fatal') }}"{% endraw %}
},
{
"name": "refresh-after-index",
"operation": "refresh"
},
{
"operation": {
"operation-type": "force-merge",
"request-timeout": 7200
{% raw %}{%- if force_merge_max_num_segments is defined %}{% endraw %},
"max-num-segments": {% raw %}{{ force_merge_max_num_segments | tojson }}{% endraw %}
{% raw %}{%- endif %}{% endraw %}
}
},
{
"name": "refresh-after-force-merge",
"operation": "refresh"
},
{
"operation": "wait-until-merges-finish"
},
{
"operation": "create-snapshot-repository"
},
{
"operation": "delete-snapshot"
},
{
"operation": "create-snapshot"
},
{
"operation": "wait-for-snapshot-creation"
},
{
"operation": {
"name": "delete-local-index",
"operation-type": "delete-index"
}
},
{
"operation": "restore-snapshot"
},
{
"operation": "default",
"warmup-iterations": 50,
"iterations": 100
{% raw %}{%- if not target_throughput %}{% endraw %}
,"target-throughput": 3
{% raw %}{%- elif target_throughput is string and target_throughput.lower() == 'none' %}{% endraw %}
{% raw %}{%- else %}{% endraw %}
,"target-throughput": {% raw %}{{ target_throughput | tojson }}{% endraw %}
{% raw %}{%- endif %}{% endraw %}
{% raw %}{%-if search_clients is defined and search_clients %}{% endraw %}
,"clients": {% raw %}{{ search_clients | tojson}}{% endraw %}
{% raw %}{%- endif %}{% endraw %}
},
{
"operation": "range",
"warmup-iterations": 50,
"iterations": 100
{% raw %}{%- if not target_throughput %}{% endraw %}
,"target-throughput": 0.7
{% raw %}{%- elif target_throughput is string and target_throughput.lower() == 'none' %}{% endraw %}
{% raw %}{%- else %}{% endraw %}
,"target-throughput": {% raw %}{{ target_throughput | tojson }}{% endraw %}
{% raw %}{%- endif %}{% endraw %}
{% raw %}{%-if search_clients is defined and search_clients %}{% endraw %}
,"clients": {% raw %}{{ search_clients | tojson}}{% endraw %}
{% raw %}{%- endif %}{% endraw %}
},
{
"operation": "distance_amount_agg",
"warmup-iterations": 50,
"iterations": 50
{% raw %}{%- if not target_throughput %}{% endraw %}
,"target-throughput": 2
{% raw %}{%- elif target_throughput is string and target_throughput.lower() == 'none' %}{% endraw %}
{% raw %}{%- else %}{% endraw %}
,"target-throughput": {% raw %}{{ target_throughput | tojson }}{% endraw %}
{% raw %}{%- endif %}{% endraw %}
{% raw %}{%-if search_clients is defined and search_clients %}{% endraw %}
,"clients": {% raw %}{{ search_clients | tojson}}{% endraw %}
{% raw %}{%- endif %}{% endraw %}
},
{
"operation": "autohisto_agg",
"warmup-iterations": 50,
"iterations": 100
{% raw %}{%- if not target_throughput %}{% endraw %}
,"target-throughput": 1.5
{% raw %}{%- elif target_throughput is string and target_throughput.lower() == 'none' %}{% endraw %}
{% raw %}{%- else %}{% endraw %}
,"target-throughput": {% raw %}{{ target_throughput | tojson }}{% endraw %}
{% raw %}{%- endif %}{% endraw %}
{% raw %}{%-if search_clients is defined and search_clients %}{% endraw %}
,"clients": {% raw %}{{ search_clients | tojson}}{% endraw %}
{% raw %}{%- endif %}{% endraw %}
},
{
"operation": "date_histogram_agg",
"warmup-iterations": 50,
"iterations": 100
{% raw %}{%- if not target_throughput %}{% endraw %}
,"target-throughput": 1.5
{% raw %}{%- elif target_throughput is string and target_throughput.lower() == 'none' %}{% endraw %}
{% raw %}{%- else %}{% endraw %}
,"target-throughput": {% raw %}{{ target_throughput | tojson }}{% endraw %}
{% raw %}{%- endif %}{% endraw %}
{% raw %}{%-if search_clients is defined and search_clients %}{% endraw %}
,"clients": {% raw %}{{ search_clients | tojson}}{% endraw %}
{% raw %}{%- endif %}{% endraw %}
}
]
}
Next steps
Now that you have familiarized yourself with the anatomy of a workload, see the criteria for Choosing a workload.