opensearch-docs-cn/_benchmark/user-guide/understanding-workloads/anatomy-of-a-workload.md

743 lines
22 KiB
Markdown

---
layout: default
title: Anatomy of a workload
nav_order: 15
grand_parent: User guide
parent: Understanding workloads
---
# Anatomy of a workload
All workloads contain the following files and directories:
- [workload.json](#workloadjson): Contains all of the workload settings.
- [index.json](#indexjson): Contains the document mappings and parameters as well as index settings.
- [files.txt](#filestxt): Contains the data corpora file names.
- [_test-procedures](#_operations-and-_test-procedures): Most workloads contain only one default test procedure, which is configured in `default.json`.
- [_operations](#_operations-and-_test-procedures): Contains all of the operations used in test procedures.
- workload.py: Adds more dynamic functionality to the test.
## workload.json
The following example workload shows all of the essential elements needed to create a `workload.json` file. You can run this workload in your own benchmark configuration to understand how all of the elements work together:
```json
{
"description": "Tutorial benchmark for OpenSearch Benchmark",
"indices": [
{
"name": "movies",
"body": "index.json"
}
],
"corpora": [
{
"name": "movies",
"documents": [
{
"source-file": "movies-documents.json",
"document-count": 11658903, # Fetch document count from command line
"uncompressed-bytes": 1544799789 # Fetch uncompressed bytes from command line
}
]
}
],
"schedule": [
{
"operation": {
"operation-type": "create-index"
}
},
{
"operation": {
"operation-type": "cluster-health",
"request-params": {
"wait_for_status": "green"
},
"retry-until-success": true
}
},
{
"operation": {
"operation-type": "bulk",
"bulk-size": 5000
},
"warmup-time-period": 120,
"clients": 8
},
{
"operation": {
"name": "query-match-all",
"operation-type": "search",
"body": {
"query": {
"match_all": {}
}
}
},
"iterations": 1000,
"target-throughput": 100
}
]
}
```
A workload usually includes the following elements:
- [indices]({{site.url}}{{site.baseurl}}/benchmark/workloads/indices/): Defines the relevant indexes and index templates used for the workload.
- [corpora]({{site.url}}{{site.baseurl}}/benchmark/workloads/corpora/): Defines all document corpora used for the workload.
- `schedule`: Defines operations and the order in which the operations run inline. Alternatively, you can use `operations` to group operations and the `test_procedures` parameter to specify the order of operations.
- `operations`: **Optional**. Describes which operations are available for the workload and how they are parameterized.
### Indices
To create an index, specify its `name`. To add definitions to your index, use the `body` option and point it to the JSON file containing the index definitions. For more information, see [Indices]({{site.url}}{{site.baseurl}}/benchmark/workloads/indices/).
### Corpora
The `corpora` element requires the name of the index containing the document corpus, for example, `movies`, and a list of parameters that define the document corpora. This list includes the following parameters:
- `source-file`: The file name that contains the workload's corresponding documents. When using OpenSearch Benchmark locally, documents are contained in a JSON file. When providing a `base_url`, use a compressed file format: `.zip`, `.bz2`, `.zst`, `.gz`, `.tar`, `.tar.gz`, `.tgz`, or `.tar.bz2`. The compressed file must include one JSON file containing the name.
- `document-count`: The number of documents in the `source-file`, which determines which client indexes correlate to which parts of the document corpus. Each N client is assigned an Nth of the document corpus to ingest into the test cluster. When using a source that contains a document with a parent-child relationship, specify the number of parent documents.
- `uncompressed-bytes`: The size, in bytes, of the source file after decompression, indicating how much disk space the decompressed source file needs.
- `compressed-bytes`: The size, in bytes, of the source file before decompression. This can help you assess the amount of time needed for the cluster to ingest documents.
### Operations
The `operations` element lists the OpenSearch API operations performed by the workload. For example, you can list an operation named `create-index` that creates an index in the benchmark cluster to which OpenSearch Benchmark can write documents. Operations are usually listed inside of the `schedule` element.
### Schedule
The `schedule` element contains a list of operations that are run in a specified order, as shown in the following JSON example:
```json
"schedule": [
{
"operation": {
"operation-type": "create-index"
}
},
{
"operation": {
"operation-type": "cluster-health",
"request-params": {
"wait_for_status": "green"
},
"retry-until-success": true
}
},
{
"operation": {
"operation-type": "bulk",
"bulk-size": 5000
},
"warmup-time-period": 120,
"clients": 8
},
{
"operation": {
"name": "query-match-all",
"operation-type": "search",
"body": {
"query": {
"match_all": {}
}
}
},
"iterations": 1000,
"target-throughput": 100
}
]
}
```
According to this `schedule`, the actions will run in the following order:
1. The `create-index` operation creates an index. The index remains empty until the `bulk` operation adds documents with benchmarked data.
2. The `cluster-health` operation assesses the cluster's health before running the workload. In the JSON example, the workload waits until the cluster's health status is `green`.
- The `bulk` operation runs the `bulk` API to index `5000` documents simultaneously.
- Before benchmarking, the workload waits until the specified `warmup-time-period` passes. In the JSON example, the warmup period is `120` seconds.
3. The `clients` field defines the number of clients, in this example, eight, that will run the bulk indexing operation concurrently.
4. The `search` operation runs a `match_all` query to match all documents after they have been indexed by the `bulk` API using the specified clients.
- The `iterations` field defines the number of times each client runs the `search` operation. The benchmark report automatically adjusts the percentile numbers based on this number. To generate a precise percentile, the benchmark needs to run at least 1,000 iterations.
- The `target-throughput` field defines the number of requests per second that each client performs. When set, the setting can help reduce benchmark latency. For example, a `target-throughput` of 100 requests divided by 8 clients means that each client will issue 12 requests per second. For more information about how target throughput is defined in OpenSearch Benchmark, see [Throughput and latency](https://opensearch.org/docs/latest/benchmark/user-guide/concepts/#throughput-and-latency).
## index.json
The `index.json` file defines the data mappings, indexing parameters, and index settings for workload documents during `create-index` operations.
When OpenSearch Benchmark creates an index for the workload, it uses the index settings and mappings template in the `index.json` file. Mappings in the `index.json` file are based on the mappings of a single document from the workload's corpus, which is stored in the `files.txt` file. The following is an example of the `index.json` file for the `nyc_taxis` workload. You can customize the fields, such as `number_of_shards`, `number_of_replicas`, `query_cache_enabled`, and `requests_cache_enabled`.
```json
{
"settings": {
"index.number_of_shards": {{number_of_shards | default(1)}},
"index.number_of_replicas": {{number_of_replicas | default(0)}},
"index.queries.cache.enabled": {{query_cache_enabled | default(false) | tojson}},
"index.requests.cache.enable": {{requests_cache_enabled | default(false) | tojson}}
},
"mappings": {
"_source": {
"enabled": {{ source_enabled | default(true) | tojson }}
},
"properties": {
"surcharge": {
"scaling_factor": 100,
"type": "scaled_float"
},
"dropoff_datetime": {
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss"
},
"trip_type": {
"type": "keyword"
},
"mta_tax": {
"scaling_factor": 100,
"type": "scaled_float"
},
"rate_code_id": {
"type": "keyword"
},
"passenger_count": {
"type": "integer"
},
"pickup_datetime": {
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss"
},
"tolls_amount": {
"scaling_factor": 100,
"type": "scaled_float"
},
"tip_amount": {
"type": "half_float"
},
"payment_type": {
"type": "keyword"
},
"extra": {
"scaling_factor": 100,
"type": "scaled_float"
},
"vendor_id": {
"type": "keyword"
},
"store_and_fwd_flag": {
"type": "keyword"
},
"improvement_surcharge": {
"scaling_factor": 100,
"type": "scaled_float"
},
"fare_amount": {
"scaling_factor": 100,
"type": "scaled_float"
},
"ehail_fee": {
"scaling_factor": 100,
"type": "scaled_float"
},
"cab_color": {
"type": "keyword"
},
"dropoff_location": {
"type": "geo_point"
},
"vendor_name": {
"type": "text"
},
"total_amount": {
"scaling_factor": 100,
"type": "scaled_float"
},
"trip_distance": {
"scaling_factor": 100,
"type": "scaled_float"
},
"pickup_location": {
"type": "geo_point"
}
},
"dynamic": "strict"
}
}
```
## files.txt
The `files.txt` file lists the files that store the workload data, which are typically stored in a zipped JSON file.
## _operations and _test-procedures
To make the workload more human-readable, `_operations` and `_test-procedures` are separated into two directories.
The `_operations` directory contains a `default.json` file that lists all of the supported operations that the test procedure can use. Some workloads, such as `nyc_taxis`, contain an additional `.json` file that lists feature-specific operations, such as `snapshot` operations. The following JSON example shows a list of operations from the `nyc_taxis` workload:
```json
{
"name": "index",
"operation-type": "bulk",
"bulk-size": {{bulk_size | default(10000)}},
"ingest-percentage": {{ingest_percentage | default(100)}}
},
{
"name": "update",
"operation-type": "bulk",
"bulk-size": {{bulk_size | default(10000)}},
"ingest-percentage": {{ingest_percentage | default(100)}},
"conflicts": "{{conflicts | default('random')}}",
"on-conflict": "{{on_conflict | default('update')}}",
"conflict-probability": {{conflict_probability | default(25)}},
"recency": {{recency | default(0)}}
},
{
"name": "wait-until-merges-finish",
"operation-type": "index-stats",
"index": "_all",
"condition": {
"path": "_all.total.merges.current",
"expected-value": 0
},
"retry-until-success": true,
"include-in-reporting": false
},
{
"name": "default",
"operation-type": "search",
"body": {
"query": {
"match_all": {}
}
}
},
{
"name": "range",
"operation-type": "search",
"body": {
"query": {
"range": {
"total_amount": {
"gte": 5,
"lt": 15
}
}
}
}
},
{
"name": "distance_amount_agg",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"bool": {
"filter": {
"range": {
"trip_distance": {
"lt": 50,
"gte": 0
}
}
}
}
},
"aggs": {
"distance_histo": {
"histogram": {
"field": "trip_distance",
"interval": 1
},
"aggs": {
"total_amount_stats": {
"stats": {
"field": "total_amount"
}
}
}
}
}
}
},
{
"name": "autohisto_agg",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"range": {
"dropoff_datetime": {
"gte": "01/01/2015",
"lte": "21/01/2015",
"format": "dd/MM/yyyy"
}
}
},
"aggs": {
"dropoffs_over_time": {
"auto_date_histogram": {
"field": "dropoff_datetime",
"buckets": 20
}
}
}
}
},
{
"name": "date_histogram_agg",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"range": {
"dropoff_datetime": {
"gte": "01/01/2015",
"lte": "21/01/2015",
"format": "dd/MM/yyyy"
}
}
},
"aggs": {
"dropoffs_over_time": {
"date_histogram": {
"field": "dropoff_datetime",
"calendar_interval": "day"
}
}
}
}
},
{
"name": "date_histogram_calendar_interval",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"range": {
"dropoff_datetime": {
"gte": "2015-01-01 00:00:00",
"lt": "2016-01-01 00:00:00"
}
}
},
"aggs": {
"dropoffs_over_time": {
"date_histogram": {
"field": "dropoff_datetime",
"calendar_interval": "month"
}
}
}
}
},
{
"name": "date_histogram_calendar_interval_with_tz",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"range": {
"dropoff_datetime": {
"gte": "2015-01-01 00:00:00",
"lt": "2016-01-01 00:00:00"
}
}
},
"aggs": {
"dropoffs_over_time": {
"date_histogram": {
"field": "dropoff_datetime",
"calendar_interval": "month",
"time_zone": "America/New_York"
}
}
}
}
},
{
"name": "date_histogram_fixed_interval",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"range": {
"dropoff_datetime": {
"gte": "2015-01-01 00:00:00",
"lt": "2016-01-01 00:00:00"
}
}
},
"aggs": {
"dropoffs_over_time": {
"date_histogram": {
"field": "dropoff_datetime",
"fixed_interval": "60d"
}
}
}
}
},
{
"name": "date_histogram_fixed_interval_with_tz",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"range": {
"dropoff_datetime": {
"gte": "2015-01-01 00:00:00",
"lt": "2016-01-01 00:00:00"
}
}
},
"aggs": {
"dropoffs_over_time": {
"date_histogram": {
"field": "dropoff_datetime",
"fixed_interval": "60d",
"time_zone": "America/New_York"
}
}
}
}
},
{
"name": "date_histogram_fixed_interval_with_metrics",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"range": {
"dropoff_datetime": {
"gte": "2015-01-01 00:00:00",
"lt": "2016-01-01 00:00:00"
}
}
},
"aggs": {
"dropoffs_over_time": {
"date_histogram": {
"field": "dropoff_datetime",
"fixed_interval": "60d"
},
"aggs": {
"total_amount": { "stats": { "field": "total_amount" } },
"tip_amount": { "stats": { "field": "tip_amount" } },
"trip_distance": { "stats": { "field": "trip_distance" } }
}
}
}
}
},
{
"name": "auto_date_histogram",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"range": {
"dropoff_datetime": {
"gte": "2015-01-01 00:00:00",
"lt": "2016-01-01 00:00:00"
}
}
},
"aggs": {
"dropoffs_over_time": {
"auto_date_histogram": {
"field": "dropoff_datetime",
"buckets": "12"
}
}
}
}
},
{
"name": "auto_date_histogram_with_tz",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"range": {
"dropoff_datetime": {
"gte": "2015-01-01 00:00:00",
"lt": "2016-01-01 00:00:00"
}
}
},
"aggs": {
"dropoffs_over_time": {
"auto_date_histogram": {
"field": "dropoff_datetime",
"buckets": "13",
"time_zone": "America/New_York"
}
}
}
}
},
{
"name": "auto_date_histogram_with_metrics",
"operation-type": "search",
"body": {
"size": 0,
"query": {
"range": {
"dropoff_datetime": {
"gte": "2015-01-01 00:00:00",
"lt": "2016-01-01 00:00:00"
}
}
},
"aggs": {
"dropoffs_over_time": {
"auto_date_histogram": {
"field": "dropoff_datetime",
"buckets": "12"
},
"aggs": {
"total_amount": { "stats": { "field": "total_amount" } },
"tip_amount": { "stats": { "field": "tip_amount" } },
"trip_distance": { "stats": { "field": "trip_distance" } }
}
}
}
}
},
{
"name": "desc_sort_tip_amount",
"operation-type": "search",
"index": "nyc_taxis",
"body": {
"query": {
"match_all": {}
},
"sort" : [
{"tip_amount" : "desc"}
]
}
},
{
"name": "asc_sort_tip_amount",
"operation-type": "search",
"index": "nyc_taxis",
"body": {
"query": {
"match_all": {}
},
"sort" : [
{"tip_amount" : "asc"}
]
}
}
```
The `_test-procedures` directory contains a `default.json` file that sets the order of operations performed by the workload. Similar to the `_operations` directory, the `_test-procedures` directory can also contain feature-specific test procedures, such as `searchable_snapshots.json` for `nyc_taxis`. The following examples show the searchable snapshots test procedures for `nyc_taxis`:
```json
{
"name": "searchable-snapshot",
"description": "Measuring performance for Searchable Snapshot feature. Based on the default test procedure 'append-no-conflicts'.",
"schedule": [
{
"operation": "delete-index"
},
{
"operation": {
"operation-type": "create-index",
"settings": {
"index.codec": "best_compression",
"index.refresh_interval": "30s",
"index.translog.flush_threshold_size": "4g"
}
}
},
{
"name": "check-cluster-health",
"operation": {
"operation-type": "cluster-health",
"index": "nyc_taxis",
"request-params": {
"wait_for_status": "{{ cluster_health | default('green') }}",
"wait_for_no_relocating_shards": "true"
},
"retry-until-success": true
}
},
{
"operation": "index",
"warmup-time-period": 240,
"clients": {{ bulk_indexing_clients | default(8) }},
"ignore-response-error-level": "{{ error_level | default('non-fatal') }}"
},
{
"name": "refresh-after-index",
"operation": "refresh"
},
{
"operation": {
"operation-type": "force-merge",
"request-timeout": 7200
}
},
{
"name": "refresh-after-force-merge",
"operation": "refresh"
},
{
"operation": "wait-until-merges-finish"
},
{
"operation": "create-snapshot-repository"
},
{
"operation": "delete-snapshot"
},
{
"operation": "create-snapshot"
},
{
"operation": "wait-for-snapshot-creation"
},
{
"operation": {
"name": "delete-local-index",
"operation-type": "delete-index"
}
},
{
"operation": "restore-snapshot"
},
{
"operation": "default",
"warmup-iterations": 50,
"iterations": 100
},
{
"operation": "range",
"warmup-iterations": 50,
"iterations": 100
},
{
"operation": "distance_amount_agg",
"warmup-iterations": 50,
"iterations": 50
},
{
"operation": "autohisto_agg",
"warmup-iterations": 50,
"iterations": 100
},
{
"operation": "date_histogram_agg",
"warmup-iterations": 50,
"iterations": 100
}
]
}
```
## Next steps
Now that you have familiarized yourself with the anatomy of a workload, see the criteria for [Choosing a workload]({{site.url}}{{site.baseurl}}/benchmark/user-guide/understanding-workloads/choosing-a-workload/).