opensearch-docs-cn/_ml-commons-plugin/pretrained-models.md

52 lines
8.0 KiB
Markdown

---
layout: default
title: Pretrained models
parent: Model-serving framework
nav_order: 120
---
The model-serving framework is an experimental feature. For updates on the progress of the model-serving framework, or if you want to leave feedback that could help improve the feature, join the discussion in the [Model-serving framework forum](https://forum.opensearch.org/t/feedback-machine-learning-model-serving-framework-experimental-release/11439).
{: .warning}
# Pretrained models
The model-serving framework supports a variety of open-source pretrained models that can assist with a range of machine learning (ML) search and analytics use cases.
## Uploading pretrained models
To use a pretrained model in your OpenSearch cluster:
1. Select the model you want to upload. For a list of pretrained models, see [supported pretrained models](#supported-pretrained-models).
2. Upload the model using the [upload API]({{site.url}}{{site.baseurl}}/ml-commons-plugin/model-serving-framework#upload-model-to-opensearch). Because a pretrained model originates from the ML Commons model repository, you only need to provide the `name`, `version`, and `model_format` in the upload API request.
```
POST /_plugins/_ml/models/_upload
{
"name": "huggingface/sentence-transformers/all-MiniLM-L12-v2",
"version": "1.0.1",
"model_format": "TORCH_SCRIPT"
}
```
For more information on how to upload and use ML models, see [Model-serving framework]({{site.url}}{{site.baseurl}}/ml-commons-plugin/model-serving-framework).
## Supported pretrained models
The model-serving framework supports the following models, categorized by type. All models are traced from [Hugging Face](https://huggingface.co/). Although models with the same type will have similar use cases, each model has a different model size and performs differently depending on your cluster. For a comparison of the performances of some pretrained models, see the [sbert documentation](https://www.sbert.net/docs/pretrained_models.html#model-overview).
### Sentence transformers
Sentence transformer models map sentences and paragraphs across a dimensional dense vector space. The number of vectors depends on the model. Use these models for use cases such as clustering and semantic search.
The following table provides a list of sentence transformer models and artifact links to download them:
| **Model name** | **Vector dimensions** | **Torchscript artifact** | **ONNX artifact** |
|---|---|---|---|
| `sentence-transformers/all-distilroberta-v1` | 768-dimensional dense vector space. | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-distilroberta-v1/1.0.1/torch_script/sentence-transformers_all-distilroberta-v1-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-distilroberta-v1/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-distilroberta-v1/1.0.1/onnx/sentence-transformers_all-distilroberta-v1-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-distilroberta-v1/1.0.1/onnx/config.json) |
| `sentence-transformers/all-MiniLM-L6-v2` | 384-dimensional dense vector space. | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L6-v2/1.0.1/torch_script/sentence-transformers_all-MiniLM-L6-v2-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L6-v2/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L6-v2/1.0.1/onnx/sentence-transformers_all-MiniLM-L6-v2-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L6-v2/1.0.1/onnx/config.json) |
| `sentence-transformers/all-MiniLM-L12-v2` | 384-dimensional dense vector space. | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L12-v2/1.0.1/torch_script/sentence-transformers_all-MiniLM-L12-v2-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L12-v2/1.0.1/onnx/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L12-v2/1.0.1/onnx/sentence-transformers_all-MiniLM-L12-v2-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L12-v2/1.0.1/onnx/config.json) |
| `sentence-transformers/all-mpnet-base-v2` | 768-dimensional dense vector space. | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-mpnet-base-v2/1.0.1/torch_script/sentence-transformers_all-mpnet-base-v2-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-mpnet-base-v2/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-mpnet-base-v2/1.0.1/onnx/sentence-transformers_all-mpnet-base-v2-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-mpnet-base-v2/1.0.1/onnx/config.json) |
| `sentence-transformers/msmarco-distilbert-base-tas-b` | 768-dimensional dense vector space. Optimized for semantic search. | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/msmarco-distilbert-base-tas-b/1.0.1/torch_script/sentence-transformers_msmarco-distilbert-base-tas-b-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/msmarco-distilbert-base-tas-b/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/msmarco-distilbert-base-tas-b/1.0.1/onnx/sentence-transformers_msmarco-distilbert-base-tas-b-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/msmarco-distilbert-base-tas-b/1.0.1/onnx/config.json) |
| `sentence-transformers/paraphrase-MiniLM-L3-v2` | 384-dimensional dense vector space. | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-MiniLM-L3-v2/1.0.1/torch_script/sentence-transformers_paraphrase-MiniLM-L3-v2-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-MiniLM-L3-v2/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-MiniLM-L3-v2/1.0.1/onnx/sentence-transformers_paraphrase-MiniLM-L3-v2-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-MiniLM-L3-v2/1.0.1/onnx/config.json) |
| `sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2` | 384-dimensional dense vector space. | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2/1.0.1/torch_script/sentence-transformers_paraphrase-multilingual-MiniLM-L12-v2-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2/1.0.1/onnx/sentence-transformers_paraphrase-multilingual-MiniLM-L12-v2-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2/1.0.1/onnx/config.json) |