opensearch-docs-cn/docs/ad/api.md

47 KiB
Raw Blame History

layout title parent nav_order
default Anomaly detection API Anomaly detection 1

Anomaly detection API

Use these anomaly detection operations to programmatically create and manage detectors.


Table of contents

  • TOC {:toc}

Create anomaly detector

Creates an anomaly detector.

This command creates a detector named http_requests that finds anomalies based on the sum and average number of failed HTTP requests:

Request

POST _opensearch/_anomaly_detection/detectors
{
  "name": "test-detector",
  "description": "Test detector",
  "time_field": "timestamp",
  "indices": [
    "order*"
  ],
  "feature_attributes": [
    {
      "feature_name": "total_order",
      "feature_enabled": true,
      "aggregation_query": {
        "total_order": {
          "sum": {
            "field": "value"
          }
        }
      }
    }
  ],
  "filter_query": {
    "bool": {
      "filter": [
        {
          "exists": {
            "field": "value",
            "boost": 1
          }
        }
      ],
      "adjust_pure_negative": true,
      "boost": 1
    }
  },
  "detection_interval": {
    "period": {
      "interval": 1,
      "unit": "Minutes"
    }
  },
  "window_delay": {
    "period": {
      "interval": 1,
      "unit": "Minutes"
    }
  }
}

Sample response

{
  "_id": "m4ccEnIBTXsGi3mvMt9p",
  "_version": 1,
  "_seq_no": 3,
  "_primary_term": 1,
  "anomaly_detector": {
    "name": "test-detector",
    "description": "Test detector",
    "time_field": "timestamp",
    "indices": [
      "order*"
    ],
    "filter_query": {
      "bool": {
        "filter": [
          {
            "exists": {
              "field": "value",
              "boost": 1
            }
          }
        ],
        "adjust_pure_negative": true,
        "boost": 1
      }
    },
    "detection_interval": {
      "period": {
        "interval": 1,
        "unit": "Minutes"
      }
    },
    "window_delay": {
      "period": {
        "interval": 1,
        "unit": "Minutes"
      }
    },
    "schema_version": 0,
    "feature_attributes": [
      {
        "feature_id": "mYccEnIBTXsGi3mvMd8_",
        "feature_name": "total_order",
        "feature_enabled": true,
        "aggregation_query": {
          "total_order": {
            "sum": {
              "field": "value"
            }
          }
        }
      }
    ]
  }
}

To set a category field for high cardinality:

Request

POST _opensearch/_anomaly_detection/detectors
{
  "name": "Host OK Rate Detector",
  "description": "ok rate",
  "time_field": "@timestamp",
  "indices": [
    "host-cloudwatch"
  ],
  "category_field": [
    "host"
  ],
  "feature_attributes": [
    {
      "feature_name": "latency_max",
      "feature_enabled": true,
      "aggregation_query": {
        "latency_max": {
          "max": {
            "field": "latency"
          }
        }
      }
    }
  ],
  "window_delay": {
    "period": {
      "interval": 10,
      "unit": "MINUTES"
    }
  },
  "detection_interval": {
    "period": {
      "interval": 1,
      "unit": "MINUTES"
    }
  }
}

Sample response

{
  "_id": "4CIGoHUBTpMGN-4KzBQg",
  "_version": 1,
  "_seq_no": 0,
  "anomaly_detector": {
    "name": "Host OK Rate Detector",
    "description": "ok rate",
    "time_field": "@timestamp",
    "indices": [
      "server-metrics"
    ],
    "filter_query": {
      "match_all": {
        "boost": 1
      }
    },
    "detection_interval": {
      "period": {
        "interval": 1,
        "unit": "Minutes"
      }
    },
    "window_delay": {
      "period": {
        "interval": 10,
        "unit": "MINUTES"
      }
    },
    "shingle_size": 1,
    "schema_version": 2,
    "feature_attributes": [
      {
        "feature_id": "0Kld3HUBhpHMyt2e_UHn",
        "feature_name": "latency_max",
        "feature_enabled": true,
        "aggregation_query": {
          "latency_max": {
            "max": {
              "field": "latency"
            }
          }
        }
      }
    ],
    "last_update_time": 1604707601438,
    "category_field": [
      "host"
    ]
  },
  "_primary_term": 1
}

To create a historical detector:

Request

POST _opensearch/_anomaly_detection/detectors
{
  "name": "test1",
  "description": "test historical detector",
  "time_field": "timestamp",
  "indices": [
    "host-cloudwatch"
  ],
  "filter_query": {
    "match_all": {
      "boost": 1
    }
  },
  "detection_interval": {
    "period": {
      "interval": 1,
      "unit": "Minutes"
    }
  },
  "window_delay": {
    "period": {
      "interval": 1,
      "unit": "Minutes"
    }
  },
  "feature_attributes": [
    {
      "feature_name": "F1",
      "feature_enabled": true,
      "aggregation_query": {
        "f_1": {
          "sum": {
            "field": "value"
          }
        }
      }
    }
  ],
  "detection_date_range": {
    "start_time": 1577840401000,
    "end_time": 1606121925000
  }
}

You can specify the following options.

Options Description Type Required
name The name of the detector. string Yes
description A description of the detector. string Yes
time_field The name of the time field. string Yes
indices A list of indices to use as the data source. list Yes
feature_attributes Specify a feature_name, set the enabled parameter to true, and specify an aggregation query. list Yes
filter_query Provide an optional filter query for your feature. object No
detection_interval The time interval for your anomaly detector. object Yes
window_delay Add extra processing time for data collection. object No
category_field Categorizes or slices data with a dimension. Similar to GROUP BY in SQL. list No
detection_date_range Specify the start time and end time for a historical detector. object No

Preview detector

Passes a date range to the anomaly detector to return any anomalies within that date range.

Request

POST _opensearch/_anomaly_detection/detectors/<detectorId>/_preview
{
  "period_start": 1588838250000,
  "period_end": 1589443050000
}

Sample response

{
  "anomaly_result": [
    ...
    {
      "detector_id": "m4ccEnIBTXsGi3mvMt9p",
      "data_start_time": 1588843020000,
      "data_end_time": 1588843620000,
      "feature_data": [
        {
          "feature_id": "xxokEnIBcpeWMD987A1X",
          "feature_name": "total_order",
          "data": 489.9929131106
        }
      ],
      "anomaly_grade": 0,
      "confidence": 0.99
    }
    ...
  ],
  "anomaly_detector": {
    "name": "test-detector",
    "description": "Test detector",
    "time_field": "timestamp",
    "indices": [
      "order*"
    ],
    "filter_query": {
      "bool": {
        "filter": [
          {
            "exists": {
              "field": "value",
              "boost": 1
            }
          }
        ],
        "adjust_pure_negative": true,
        "boost": 1
      }
    },
    "detection_interval": {
      "period": {
        "interval": 10,
        "unit": "MINUTES"
      }
    },
    "window_delay": {
      "period": {
        "interval": 1,
        "unit": "MINUTES"
      }
    },
    "schema_version": 0,
    "feature_attributes": [
      {
        "feature_id": "xxokEnIBcpeWMD987A1X",
        "feature_name": "total_order",
        "feature_enabled": true,
        "aggregation_query": {
          "total_order": {
            "sum": {
              "field": "value"
            }
          }
        }
      }
    ],
    "last_update_time": 1589442309241
  }
}

If you specify a category field, each result is associated with an entity:

Sample response

{
  "anomaly_result": [
    {
      "detector_id": "4CIGoHUBTpMGN-4KzBQg",
      "data_start_time": 1604277960000,
      "data_end_time": 1604278020000,
      "schema_version": 0,
      "anomaly_grade": 0,
      "confidence": 0.99
    }
  ],
  "entity": [
    {
      "name": "host",
      "value": "i-00f28ec1eb8997686"
    }
  ]
},
{
  "detector_id": "4CIGoHUBTpMGN-4KzBQg",
  "data_start_time": 1604278020000,
  "data_end_time": 1604278080000,
  "schema_version": 0,
  "feature_data": [
    {
      "feature_id": "0Kld3HUBhpHMyt2e_UHn",
      "feature_name": "latency_max",
      "data": -17
    }
  ],
  "anomaly_grade": 0,
  "confidence": 0.99,
  "entity": [
    {
      "name": "host",
      "value": "i-00f28ec1eb8997686"
    }
  ]
}
...


Start detector job

Starts a real-time or historical detector job.

Request

POST _opensearch/_anomaly_detection/detectors/<detectorId>/_start

Sample response

{
  "_id" : "m4ccEnIBTXsGi3mvMt9p",
  "_version" : 1,
  "_seq_no" : 6,
  "_primary_term" : 1
}

Stop detector job

Stops a real-time or historical anomaly detector job.

Request

POST _opensearch/_anomaly_detection/detectors/<detectorId>/_stop

Sample response

Stopped detector: m4ccEnIBTXsGi3mvMt9p

Search detector result

Returns all results for a search query.

Request

GET _opensearch/_anomaly_detection/detectors/results/_search
POST _opensearch/_anomaly_detection/detectors/results/_search

{
  "query": {
    "bool": {
      "must": {
        "range": {
          "anomaly_score": {
            "gte": 0.6,
            "lte": 1
          }
        }
      }
    }
  }
}

Sample response

{
  "took": 9,
  "timed_out": false,
  "_shards": {
    "total": 25,
    "successful": 25,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": {
      "value": 2,
      "relation": "eq"
    },
    "max_score": 1,
    "hits": [
      {
        "_index": ".opensearch-anomaly-results-history-2020.04.30-1",
        "_type": "_doc",
        "_id": "_KBrzXEBbpoKkFM5mStm",
        "_version": 1,
        "_seq_no": 58,
        "_primary_term": 1,
        "_score": 1,
        "_source": {
          "detector_id": "2KDozHEBbpoKkFM58yr6",
          "anomaly_score": 0.8995068350366767,
          "execution_start_time": 1588289313114,
          "data_end_time": 1588289313114,
          "confidence": 0.84214852704501,
          "data_start_time": 1588289253114,
          "feature_data": [
            {
              "feature_id": "X0fpzHEB5NGZmIRkXKcy",
              "feature_name": "total_error",
              "data": 20
            }
          ],
          "execution_end_time": 1588289313126,
          "anomaly_grade": 0
        }
      },
      {
        "_index": ".opensearch-anomaly-results-history-2020.04.30-1",
        "_type": "_doc",
        "_id": "EqB1zXEBbpoKkFM5qyyE",
        "_version": 1,
        "_seq_no": 61,
        "_primary_term": 1,
        "_score": 1,
        "_source": {
          "detector_id": "2KDozHEBbpoKkFM58yr6",
          "anomaly_score": 0.7086834513354907,
          "execution_start_time": 1588289973113,
          "data_end_time": 1588289973113,
          "confidence": 0.42162017029510446,
          "data_start_time": 1588289913113,
          "feature_data": [
            {
              "feature_id": "X0fpzHEB5NGZmIRkXKcy",
              "feature_name": "memory_usage",
              "data": 20.0347333108
            }
          ],
          "execution_end_time": 1588289973124,
          "anomaly_grade": 0
        }
      }
    ]
  }
}

In high cardinality detectors, the result contains entities information. To see an ordered set of anomaly records for an entity with an anomaly within a certain time range for a specific feature value:

Request

POST _opensearch/_anomaly_detection/detectors/results/_search
{
  "query": {
    "bool": {
      "filter": [
        {
          "term": {
            "detector_id": "4CIGoHUBTpMGN-4KzBQg"
          }
        },
        {
          "range": {
            "anomaly_grade": {
              "gt": 0
            }
          }
        },
        {
          "nested": {
            "path": "entity",
            "query": {
              "bool": {
                "must": [
                  {
                    "term": {
                      "entity.value": "i-00f28ec1eb8997685"
                    }
                  }
                ]
              }
            }
          }
        }
      ]
    }
  },
  "size": 8,
  "sort": [
    {
      "execution_end_time": {
        "order": "desc"
      }
    }
  ],
  "track_total_hits": true
}

Sample response

{
  "took": 443,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": {
      "value": 7,
      "relation": "eq"
    },
    "max_score": null,
    "hits": [
      {
        "_index": ".opensearch-anomaly-results-history-2020.11.07-1",
        "_type": "_doc",
        "_id": "BiItoHUBTpMGN-4KARY5",
        "_version": 1,
        "_seq_no": 206,
        "_primary_term": 1,
        "_score": null,
        "_source": {
          "detector_id": "4CIGoHUBTpMGN-4KzBQg",
          "schema_version": 2,
          "anomaly_score": 2.462550517055763,
          "execution_start_time": 1604710105400,
          "data_end_time": 1604710094516,
          "confidence": 0.8246254862573076,
          "data_start_time": 1604710034516,
          "feature_data": [
            {
              "feature_id": "0Kld3HUBhpHMyt2e_UHn",
              "feature_name": "latency_max",
              "data": 3526
            }
          ],
          "execution_end_time": 1604710105401,
          "anomaly_grade": 0.08045977011494891,
          "entity": [
            {
              "name": "host",
              "value": "i-00f28ec1eb8997685"
            }
          ]
        },
        "sort": [
          1604710105401
        ]
      },
      {
        "_index": ".opensearch-anomaly-results-history-2020.11.07-1",
        "_type": "_doc",
        "_id": "wiImoHUBTpMGN-4KlhXs",
        "_version": 1,
        "_seq_no": 156,
        "_primary_term": 1,
        "_score": null,
        "_source": {
          "detector_id": "4CIGoHUBTpMGN-4KzBQg",
          "schema_version": 2,
          "anomaly_score": 4.892453213261217,
          "execution_start_time": 1604709684971,
          "data_end_time": 1604709674522,
          "confidence": 0.8313735633713821,
          "data_start_time": 1604709614522,
          "feature_data": [
            {
              "feature_id": "0Kld3HUBhpHMyt2e_UHn",
              "feature_name": "latency_max",
              "data": 5709
            }
          ],
          "execution_end_time": 1604709684971,
          "anomaly_grade": 0.06542056074767538,
          "entity": [
            {
              "name": "host",
              "value": "i-00f28ec1eb8997685"
            }
          ]
        },
        "sort": [
          1604709684971
        ]
      },
      {
        "_index": ".opensearch-anomaly-results-history-2020.11.07-1",
        "_type": "_doc",
        "_id": "ZiIcoHUBTpMGN-4KhhVA",
        "_version": 1,
        "_seq_no": 79,
        "_primary_term": 1,
        "_score": null,
        "_source": {
          "detector_id": "4CIGoHUBTpMGN-4KzBQg",
          "schema_version": 2,
          "anomaly_score": 3.187717536855158,
          "execution_start_time": 1604709025343,
          "data_end_time": 1604709014520,
          "confidence": 0.8301116064308817,
          "data_start_time": 1604708954520,
          "feature_data": [
            {
              "feature_id": "0Kld3HUBhpHMyt2e_UHn",
              "feature_name": "latency_max",
              "data": 441
            }
          ],
          "execution_end_time": 1604709025344,
          "anomaly_grade": 0.040767386091133916,
          "entity": [
            {
              "name": "host",
              "value": "i-00f28ec1eb8997685"
            }
          ]
        },
        "sort": [
          1604709025344
        ]
      }
    ]
  }
}

In historical detectors, specify the detector_id. To get the latest task:

Request

GET _opensearch/_anomaly_detection/detectors/<detector_id>?task=true

To query the anomaly results with task_id:

Request

GET _opensearch/_anomaly_detection/detectors/results/_search
{
  "query": {
    "term": {
      "task_id": {
        "value": "NnlV9HUBQxqfQ7vBJNzy"
      }
    }
  }
}

Sample response

{
  "took": 1,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": {
      "value": 1,
      "relation": "eq"
    },
    "max_score": 2.1366,
    "hits": [
      {
        "_index": ".opensearch-anomaly-detection-state",
        "_type": "_doc",
        "_id": "CoM8WncBtt2qvI-LZO7_",
        "_version": 8,
        "_seq_no": 1351,
        "_primary_term": 3,
        "_score": 2.1366,
        "_source": {
          "detector_id": "dZc8WncBgO2zoQoFWVBA",
          "worker_node": "dk6-HuKQRMKm2fi8TSDHsg",
          "task_progress": 0.09486946,
          "last_update_time": 1612126667008,
          "execution_start_time": 1612126643455,
          "state": "RUNNING",
          "coordinating_node": "gs213KqjS4q7H4Bmn_ZuLA",
          "current_piece": 1583503800000,
          "task_type": "HISTORICAL",
          "started_by": "admin",
          "init_progress": 1,
          "is_latest": true,
          "detector": {
            "description": "test",
            "ui_metadata": {
              "features": {
                "F1": {
                  "aggregationBy": "sum",
                  "aggregationOf": "value",
                  "featureType": "simple_aggs"
                }
              }
            },
            "detection_date_range": {
              "start_time": 1580504240308,
              "end_time": 1612126640308
            },
            "feature_attributes": [
              {
                "feature_id": "dJc8WncBgO2zoQoFWVAt",
                "feature_enabled": true,
                "feature_name": "F1",
                "aggregation_query": {
                  "f_1": {
                    "sum": {
                      "field": "value"
                    }
                  }
                }
              }
            ],
            "schema_version": 0,
            "time_field": "timestamp",
            "last_update_time": 1612126640448,
            "indices": [
              "nab_art_daily_jumpsdown"
            ],
            "window_delay": {
              "period": {
                "unit": "Minutes",
                "interval": 1
              }
            },
            "detection_interval": {
              "period": {
                "unit": "Minutes",
                "interval": 10
              }
            },
            "name": "test-historical-detector",
            "filter_query": {
              "match_all": {
                "boost": 1
              }
            },
            "shingle_size": 8,
            "user": {
              "backend_roles": [
                "admin"
              ],
              "custom_attribute_names": [],
              "roles": [
                "all_access",
                "own_index"
              ],
              "name": "admin",
              "user_requested_tenant": "__user__"
            },
            "detector_type": "HISTORICAL_SINGLE_ENTITY"
          },
          "user": {
            "backend_roles": [
              "admin"
            ],
            "custom_attribute_names": [],
            "roles": [
              "all_access",
              "own_index"
            ],
            "name": "admin",
            "user_requested_tenant": "__user__"
          }
        }
      }
    ]
  }
}

Delete detector

Deletes a detector based on the detector_id. To delete a detector, you need to first stop the detector.

Request

DELETE _opensearch/_anomaly_detection/detectors/<detectorId>

Sample response

{
  "_index" : ".opensearch-anomaly-detectors",
  "_type" : "_doc",
  "_id" : "m4ccEnIBTXsGi3mvMt9p",
  "_version" : 2,
  "result" : "deleted",
  "forced_refresh" : true,
  "_shards" : {
    "total" : 2,
    "successful" : 2,
    "failed" : 0
  },
  "_seq_no" : 6,
  "_primary_term" : 1
}

Update detector

Updates a detector with any changes, including the description or adding or removing of features. To update a detector, you need to first stop the detector.

Request

PUT _opensearch/_anomaly_detection/detectors/<detectorId>
{
  "name": "test-detector",
  "description": "Test detector",
  "time_field": "timestamp",
  "indices": [
    "order*"
  ],
  "feature_attributes": [
    {
      "feature_name": "total_order",
      "feature_enabled": true,
      "aggregation_query": {
        "total_order": {
          "sum": {
            "field": "value"
          }
        }
      }
    }
  ],
  "filter_query": {
    "bool": {
      "filter": [
        {
          "exists": {
            "field": "value",
            "boost": 1
          }
        }
      ],
      "adjust_pure_negative": true,
      "boost": 1
    }
  },
  "detection_interval": {
    "period": {
      "interval": 10,
      "unit": "MINUTES"
    }
  },
  "window_delay": {
    "period": {
      "interval": 1,
      "unit": "MINUTES"
    }
  }
}

Sample response

{
  "_id" : "m4ccEnIBTXsGi3mvMt9p",
  "_version" : 2,
  "_seq_no" : 4,
  "_primary_term" : 1,
  "anomaly_detector" : {
    "name" : "test-detector",
    "description" : "Test detector",
    "time_field" : "timestamp",
    "indices" : [
      "order*"
    ],
    "filter_query" : {
      "bool" : {
        "filter" : [
          {
            "exists" : {
              "field" : "value",
              "boost" : 1.0
            }
          }
        ],
        "adjust_pure_negative" : true,
        "boost" : 1.0
      }
    },
    "detection_interval" : {
      "period" : {
        "interval" : 10,
        "unit" : "Minutes"
      }
    },
    "window_delay" : {
      "period" : {
        "interval" : 1,
        "unit" : "Minutes"
      }
    },
    "schema_version" : 0,
    "feature_attributes" : [
      {
        "feature_id" : "xxokEnIBcpeWMD987A1X",
        "feature_name" : "total_order",
        "feature_enabled" : true,
        "aggregation_query" : {
          "total_order" : {
            "sum" : {
              "field" : "value"
            }
          }
        }
      }
    ]
  }
}

To update a historical detector:

Request

PUT _opensearch/_anomaly_detection/detectors/<detectorId>
{
  "name": "test1",
  "description": "test historical detector",
  "time_field": "timestamp",
  "indices": [
    "nab_art_daily_jumpsdown"
  ],
  "filter_query": {
    "match_all": {
      "boost": 1
    }
  },
  "detection_interval": {
    "period": {
      "interval": 1,
      "unit": "Minutes"
    }
  },
  "window_delay": {
    "period": {
      "interval": 1,
      "unit": "Minutes"
    }
  },
  "feature_attributes": [
    {
      "feature_name": "F1",
      "feature_enabled": true,
      "aggregation_query": {
        "f_1": {
          "sum": {
            "field": "value"
          }
        }
      }
    }
  ],
  "detection_date_range": {
    "start_time": 1577840401000,
    "end_time": 1606121925000
  }
}

Get detector

Returns all information about a detector based on the detector_id.

Request

GET _opensearch/_anomaly_detection/detectors/<detectorId>

Sample response

{
  "_id" : "m4ccEnIBTXsGi3mvMt9p",
  "_version" : 1,
  "_primary_term" : 1,
  "_seq_no" : 3,
  "anomaly_detector" : {
    "name" : "test-detector",
    "description" : "Test detector",
    "time_field" : "timestamp",
    "indices" : [
      "order*"
    ],
    "filter_query" : {
      "bool" : {
        "filter" : [
          {
            "exists" : {
              "field" : "value",
              "boost" : 1.0
            }
          }
        ],
        "adjust_pure_negative" : true,
        "boost" : 1.0
      }
    },
    "detection_interval" : {
      "period" : {
        "interval" : 1,
        "unit" : "Minutes"
      }
    },
    "window_delay" : {
      "period" : {
        "interval" : 1,
        "unit" : "Minutes"
      }
    },
    "schema_version" : 0,
    "feature_attributes" : [
      {
        "feature_id" : "mYccEnIBTXsGi3mvMd8_",
        "feature_name" : "total_order",
        "feature_enabled" : true,
        "aggregation_query" : {
          "total_order" : {
            "sum" : {
              "field" : "value"
            }
          }
        }
      }
    ],
    "last_update_time" : 1589441737319
  }
}

Use job=true to get anomaly detection job information.

Request

GET _opensearch/_anomaly_detection/detectors/<detectorId>?job=true

Sample response

{
  "_id" : "m4ccEnIBTXsGi3mvMt9p",
  "_version" : 1,
  "_primary_term" : 1,
  "_seq_no" : 3,
  "anomaly_detector" : {
    "name" : "test-detector",
    "description" : "Test detector",
    "time_field" : "timestamp",
    "indices" : [
      "order*"
    ],
    "filter_query" : {
      "bool" : {
        "filter" : [
          {
            "exists" : {
              "field" : "value",
              "boost" : 1.0
            }
          }
        ],
        "adjust_pure_negative" : true,
        "boost" : 1.0
      }
    },
    "detection_interval" : {
      "period" : {
        "interval" : 1,
        "unit" : "Minutes"
      }
    },
    "window_delay" : {
      "period" : {
        "interval" : 1,
        "unit" : "Minutes"
      }
    },
    "schema_version" : 0,
    "feature_attributes" : [
      {
        "feature_id" : "mYccEnIBTXsGi3mvMd8_",
        "feature_name" : "total_order",
        "feature_enabled" : true,
        "aggregation_query" : {
          "total_order" : {
            "sum" : {
              "field" : "value"
            }
          }
        }
      }
    ],
    "last_update_time" : 1589441737319
  },
  "anomaly_detector_job" : {
    "name" : "m4ccEnIBTXsGi3mvMt9p",
    "schedule" : {
      "interval" : {
        "start_time" : 1589442051271,
        "period" : 1,
        "unit" : "Minutes"
      }
    },
    "window_delay" : {
      "period" : {
        "interval" : 1,
        "unit" : "Minutes"
      }
    },
    "enabled" : true,
    "enabled_time" : 1589442051271,
    "last_update_time" : 1589442051271,
    "lock_duration_seconds" : 60
  }
}

Use task=true to get historical detector task information.

Request

GET _opensearch/_anomaly_detection/detectors/<detectorId>?task=true

Sample response

{
  "_id": "BwzKQXcB89DLS7G9rg7Y",
  "_version": 1,
  "_primary_term": 2,
  "_seq_no": 10,
  "anomaly_detector": {
    "name": "test-ylwu1",
    "description": "test",
    "time_field": "timestamp",
    "indices": [
      "nab*"
    ],
    "filter_query": {
      "match_all": {
        "boost": 1
      }
    },
    "detection_interval": {
      "period": {
        "interval": 10,
        "unit": "Minutes"
      }
    },
    "window_delay": {
      "period": {
        "interval": 1,
        "unit": "Minutes"
      }
    },
    "shingle_size": 8,
    "schema_version": 0,
    "feature_attributes": [
      {
        "feature_id": "BgzKQXcB89DLS7G9rg7G",
        "feature_name": "F1",
        "feature_enabled": true,
        "aggregation_query": {
          "f_1": {
            "sum": {
              "field": "value"
            }
          }
        }
      }
    ],
    "ui_metadata": {
      "features": {
        "F1": {
          "aggregationBy": "sum",
          "aggregationOf": "value",
          "featureType": "simple_aggs"
        }
      }
    },
    "last_update_time": 1611716538071,
    "user": {
      "name": "admin",
      "backend_roles": [
        "admin"
      ],
      "roles": [
        "all_access",
        "own_index"
      ],
      "custom_attribute_names": [],
      "user_requested_tenant": "__user__"
    },
    "detector_type": "HISTORICAL_SINGLE_ENTITY",
    "detection_date_range": {
      "start_time": 1580094137997,
      "end_time": 1611716537997
    }
  },
  "anomaly_detection_task": {
    "task_id": "sgxaRXcB89DLS7G9RfIO",
    "last_update_time": 1611776648699,
    "started_by": "admin",
    "state": "FINISHED",
    "detector_id": "BwzKQXcB89DLS7G9rg7Y",
    "task_progress": 1,
    "init_progress": 1,
    "current_piece": 1611716400000,
    "execution_start_time": 1611776279822,
    "execution_end_time": 1611776648679,
    "is_latest": true,
    "task_type": "HISTORICAL",
    "coordinating_node": "gs213KqjS4q7H4Bmn_ZuLA",
    "worker_node": "PgfR3JhbT7yJMx7bwQ6E3w",
    "detector": {
      "name": "test-ylwu1",
      "description": "test",
      "time_field": "timestamp",
      "indices": [
        "nab*"
      ],
      "filter_query": {
        "match_all": {
          "boost": 1
        }
      },
      "detection_interval": {
        "period": {
          "interval": 10,
          "unit": "Minutes"
        }
      },
      "window_delay": {
        "period": {
          "interval": 1,
          "unit": "Minutes"
        }
      },
      "shingle_size": 8,
      "schema_version": 0,
      "feature_attributes": [
        {
          "feature_id": "BgzKQXcB89DLS7G9rg7G",
          "feature_name": "F1",
          "feature_enabled": true,
          "aggregation_query": {
            "f_1": {
              "sum": {
                "field": "value"
              }
            }
          }
        }
      ],
      "ui_metadata": {
        "features": {
          "F1": {
            "aggregationBy": "sum",
            "aggregationOf": "value",
            "featureType": "simple_aggs"
          }
        }
      },
      "last_update_time": 1611716538071,
      "user": {
        "name": "admin",
        "backend_roles": [
          "admin"
        ],
        "roles": [
          "all_access",
          "own_index"
        ],
        "custom_attribute_names": [],
        "user_requested_tenant": "__user__"
      },
      "detector_type": "HISTORICAL_SINGLE_ENTITY",
      "detection_date_range": {
        "start_time": 1580094137997,
        "end_time": 1611716537997
      }
    },
    "user": {
      "name": "admin",
      "backend_roles": [
        "admin"
      ],
      "roles": [
        "all_access",
        "own_index"
      ],
      "custom_attribute_names": [],
      "user_requested_tenant": "__user__"
    }
  }
}

Search detector

Returns all anomaly detectors for a search query.

Request

GET _opensearch/_anomaly_detection/detectors/_search
POST _opensearch/_anomaly_detection/detectors/_search

Sample Input:
{
  "query": {
    "match": {
      "name": "test-detector"
    }
  }
}

Sample response

{
  "took": 13,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": {
      "value": 994,
      "relation": "eq"
    },
    "max_score": 3.5410638,
    "hits": [
      {
        "_index": ".opensearch-anomaly-detectors",
        "_type": "_doc",
        "_id": "m4ccEnIBTXsGi3mvMt9p",
        "_version": 2,
        "_seq_no": 221,
        "_primary_term": 1,
        "_score": 3.5410638,
        "_source": {
          "name": "test-detector",
          "description": "Test detector",
          "time_field": "timestamp",
          "indices": [
            "order*"
          ],
          "filter_query": {
            "bool": {
              "filter": [
                {
                  "exists": {
                    "field": "value",
                    "boost": 1
                  }
                }
              ],
              "adjust_pure_negative": true,
              "boost": 1
            }
          },
          "detection_interval": {
            "period": {
              "interval": 10,
              "unit": "MINUTES"
            }
          },
          "window_delay": {
            "period": {
              "interval": 1,
              "unit": "MINUTES"
            }
          },
          "schema_version": 0,
          "feature_attributes": [
            {
              "feature_id": "xxokEnIBcpeWMD987A1X",
              "feature_name": "total_order",
              "feature_enabled": true,
              "aggregation_query": {
                "total_order": {
                  "sum": {
                    "field": "value"
                  }
                }
              }
            }
          ],
          "last_update_time": 1589442309241
        }
      }
    ]
  }
}

Get detector stats

Provides information about how the plugin is performing.

Request

GET _opensearch/_anomaly_detection/stats
GET _opensearch/_anomaly_detection/<nodeId>/stats
GET _opensearch/_anomaly_detection/<nodeId>/stats/<stat>
GET _opensearch/_anomaly_detection/stats/<stat>

Sample response

{
  "_nodes" : {
    "total" : 3,
    "successful" : 3,
    "failed" : 0
  },
  "cluster_name" : "multi-node-run",
  "anomaly_detectors_index_status" : "green",
  "detector_count" : 1,
  "models_checkpoint_index_status" : "green",
  "anomaly_results_index_status" : "green",
  "nodes" : {
    "IgWDUfzFRzW0FWAXM5FGJw" : {
      "ad_execute_request_count" : 8,
      "ad_execute_failure_count" : 7,
      "models" : [
        {
          "detector_id" : "m4ccEnIBTXsGi3mvMt9p",
          "model_type" : "rcf",
          "model_id" : "m4ccEnIBTXsGi3mvMt9p_model_rcf_0"
        },
        {
          "detector_id" : "m4ccEnIBTXsGi3mvMt9p",
          "model_type" : "threshold",
          "model_id" : "m4ccEnIBTXsGi3mvMt9p_model_threshold"
        }
      ]
    },
    "y7YUQWukQEWOYbfdEq13hQ" : {
      "ad_execute_request_count" : 0,
      "ad_execute_failure_count" : 0,
      "models" : [ ]
    },
    "cDcGNsPoRAyRMlPP1m-vZw" : {
      "ad_execute_request_count" : 0,
      "ad_execute_failure_count" : 0,
      "models" : [
        {
          "detector_id" : "m4ccEnIBTXsGi3mvMt9p",
          "model_type" : "rcf",
          "model_id" : "m4ccEnIBTXsGi3mvMt9p_model_rcf_2"
        },
        {
          "detector_id" : "m4ccEnIBTXsGi3mvMt9p",
          "model_type" : "rcf",
          "model_id" : "m4ccEnIBTXsGi3mvMt9p_model_rcf_1"
        }
      ]
    }
  }
}

Historical detectors contain additional fields:

Sample response

{
  "anomaly_detectors_index_status": "yellow",
  "anomaly_detection_state_status": "yellow",
  "historical_detector_count": 3,
  "detector_count": 7,
  "anomaly_detection_job_index_status": "yellow",
  "models_checkpoint_index_status": "yellow",
  "anomaly_results_index_status": "yellow",
  "nodes": {
    "Mz9HDZnuQwSCw0UiisxwWg": {
      "ad_execute_request_count": 0,
      "models": [],
      "ad_canceled_batch_task_count": 2,
      "ad_hc_execute_request_count": 0,
      "ad_hc_execute_failure_count": 0,
      "ad_execute_failure_count": 0,
      "ad_batch_task_failure_count": 0,
      "ad_executing_batch_task_count": 1,
      "ad_total_batch_task_count": 8
    }
  }
}

Create monitor

Create a monitor to set up alerts for the detector.

Request

POST _opensearch/_alerting/monitors
{
  "type": "monitor",
  "name": "test-monitor",
  "enabled": true,
  "schedule": {
    "period": {
      "interval": 20,
      "unit": "MINUTES"
    }
  },
  "inputs": [
    {
      "search": {
        "indices": [
          ".opensearch-anomaly-results*"
        ],
        "query": {
          "size": 1,
          "query": {
            "bool": {
              "filter": [
                {
                  "range": {
                    "data_end_time": {
                      "from": "{{period_end}}||-20m",
                      "to": "{{period_end}}",
                      "include_lower": true,
                      "include_upper": true,
                      "boost": 1
                    }
                  }
                },
                {
                  "term": {
                    "detector_id": {
                      "value": "m4ccEnIBTXsGi3mvMt9p",
                      "boost": 1
                    }
                  }
                }
              ],
              "adjust_pure_negative": true,
              "boost": 1
            }
          },
          "sort": [
            {
              "anomaly_grade": {
                "order": "desc"
              }
            },
            {
              "confidence": {
                "order": "desc"
              }
            }
          ],
          "aggregations": {
            "max_anomaly_grade": {
              "max": {
                "field": "anomaly_grade"
              }
            }
          }
        }
      }
    }
  ],
  "triggers": [
    {
      "name": "test-trigger",
      "severity": "1",
      "condition": {
        "script": {
          "source": "return ctx.results[0].aggregations.max_anomaly_grade.value != null && ctx.results[0].aggregations.max_anomaly_grade.value > 0.7 && ctx.results[0].hits.hits[0]._source.confidence > 0.7",
          "lang": "painless"
        }
      },
      "actions": [
        {
          "name": "test-action",
          "destination_id": "ld7912sBlQ5JUWWFThoW",
          "message_template": {
            "source": "This is my message body."
          },
          "throttle_enabled": false,
          "subject_template": {
            "source": "TheSubject"
          }
        }
      ]
    }
  ]
}

Sample response

{
  "_id": "OClTEnIBmSf7y6LP11Jz",
  "_version": 1,
  "_seq_no": 10,
  "_primary_term": 1,
  "monitor": {
    "type": "monitor",
    "schema_version": 1,
    "name": "test-monitor",
    "enabled": true,
    "enabled_time": 1589445384043,
    "schedule": {
      "period": {
        "interval": 20,
        "unit": "MINUTES"
      }
    },
    "inputs": [
      {
        "search": {
          "indices": [
            ".opensearch-anomaly-results*"
          ],
          "query": {
            "size": 1,
            "query": {
              "bool": {
                "filter": [
                  {
                    "range": {
                      "data_end_time": {
                        "from": "{{period_end}}||-20m",
                        "to": "{{period_end}}",
                        "include_lower": true,
                        "include_upper": true,
                        "boost": 1
                      }
                    }
                  },
                  {
                    "term": {
                      "detector_id": {
                        "value": "m4ccEnIBTXsGi3mvMt9p",
                        "boost": 1
                      }
                    }
                  }
                ],
                "adjust_pure_negative": true,
                "boost": 1
              }
            },
            "sort": [
              {
                "anomaly_grade": {
                  "order": "desc"
                }
              },
              {
                "confidence": {
                  "order": "desc"
                }
              }
            ],
            "aggregations": {
              "max_anomaly_grade": {
                "max": {
                  "field": "anomaly_grade"
                }
              }
            }
          }
        }
      }
    ],
    "triggers": [
      {
        "id": "NilTEnIBmSf7y6LP11Jr",
        "name": "test-trigger",
        "severity": "1",
        "condition": {
          "script": {
            "source": "return ctx.results[0].aggregations.max_anomaly_grade.value != null && ctx.results[0].aggregations.max_anomaly_grade.value > 0.7 && ctx.results[0].hits.hits[0]._source.confidence > 0.7",
            "lang": "painless"
          }
        },
        "actions": [
          {
            "id": "NylTEnIBmSf7y6LP11Jr",
            "name": "test-action",
            "destination_id": "ld7912sBlQ5JUWWFThoW",
            "message_template": {
              "source": "This is my message body.",
              "lang": "mustache"
            },
            "throttle_enabled": false,
            "subject_template": {
              "source": "TheSubject",
              "lang": "mustache"
            }
          }
        ]
      }
    ],
    "last_update_time": 1589445384043
  }
}

Profile detector

Returns information related to the current state of the detector and memory usage, including current errors and shingle size, to help troubleshoot the detector.

This command helps locate logs by identifying the nodes that run the anomaly detector job for each detector.

It also helps track the initialization percentage, the required shingles, and the estimated time left.

Request

GET _opensearch/_anomaly_detection/detectors/<detectorId>/_profile/
GET _opensearch/_anomaly_detection/detectors/<detectorId>/_profile?_all=true
GET _opensearch/_anomaly_detection/detectors/<detectorId>/_profile/<type>
GET /_opensearch/_anomaly_detection/detectors/<detectorId>/_profile/<type1>,<type2>

Sample Responses

GET _opensearch/_anomaly_detection/detectors/<detectorId>/_profile

{
    "state":"DISABLED",
    "error":"Stopped detector: AD models memory usage exceeds our limit."
}

GET _opensearch/_anomaly_detection/detectors/<detectorId>/_profile?_all=true&pretty

{
  "state": "RUNNING",
  "models": [
    {
      "model_id": "cneh7HEBHPICjJIdXdrR_model_rcf_2",
      "model_size_in_bytes": 4456448,
      "node_id": "VS29z70PSzOdHiEw4SoV9Q"
    },
    {
      "model_id": "cneh7HEBHPICjJIdXdrR_model_rcf_1",
      "model_size_in_bytes": 4456448,
      "node_id": "VS29z70PSzOdHiEw4SoV9Q"
    },
    {
      "model_id": "cneh7HEBHPICjJIdXdrR_model_threshold",
      "node_id": "Og23iUroTdKrkwS-y89zLw"
    },
    {
      "model_id": "cneh7HEBHPICjJIdXdrR_model_rcf_0",
      "model_size_in_bytes": 4456448,
      "node_id": "Og23iUroTdKrkwS-y89zLw"
    }
  ],
  "shingle_size": 8,
  "coordinating_node": "Og23iUroTdKrkwS-y89zLw",
  "total_size_in_bytes": 13369344,
  "init_progress": {
    "percentage": "70%",
    "estimated_minutes_left": 77,
    "needed_shingles": 77
  }
}

GET _opensearch/_anomaly_detection/detectors/<detectorId>/_profile/total_size_in_bytes

{
  "total_size_in_bytes" : 13369344
}

If you have configured the category field, you can see the number of unique values in the field and also all the active entities with models running in memory. You can use this data to estimate the memory required for anomaly detection to help decide the size of your cluster. For example, if a detector has one million entities and only 10 of them are active in memory, then you need to scale up or scale out your cluster.

Request

GET /_opensearch/_anomaly_detection/detectors/<detectorId>/_profile?_all=true&pretty

{
  "state": "RUNNING",
  "models": [
    {
      "model_id": "T4c3dXUBj-2IZN7itix__entity_i-00f28ec1eb8997684",
      "model_size_in_bytes": 712480,
      "node_id": "g6pmr547QR-CfpEvO67M4g"
    },
    {
      "model_id": "T4c3dXUBj-2IZN7itix__entity_i-00f28ec1eb8997685",
      "model_size_in_bytes": 712480,
      "node_id": "g6pmr547QR-CfpEvO67M4g"
    },
    {
      "model_id": "T4c3dXUBj-2IZN7itix__entity_i-00f28ec1eb8997686",
      "model_size_in_bytes": 712480,
      "node_id": "g6pmr547QR-CfpEvO67M4g"
    },
    {
      "model_id": "T4c3dXUBj-2IZN7itix__entity_i-00f28ec1eb8997680",
      "model_size_in_bytes": 712480,
      "node_id": "g6pmr547QR-CfpEvO67M4g"
    },
    {
      "model_id": "T4c3dXUBj-2IZN7itix__entity_i-00f28ec1eb8997681",
      "model_size_in_bytes": 712480,
      "node_id": "g6pmr547QR-CfpEvO67M4g"
    },
    {
      "model_id": "T4c3dXUBj-2IZN7itix__entity_i-00f28ec1eb8997682",
      "model_size_in_bytes": 712480,
      "node_id": "g6pmr547QR-CfpEvO67M4g"
    },
    {
      "model_id": "T4c3dXUBj-2IZN7itix__entity_i-00f28ec1eb8997683",
      "model_size_in_bytes": 712480,
      "node_id": "g6pmr547QR-CfpEvO67M4g"
    }
  ],
  "total_size_in_bytes": 4987360,
  "init_progress": {
    "percentage": "100%"
  },
  "total_entities": 7,
  "active_entities": 7
}

The profile operation also provides information about each entity, such as the entitys last_sample_timestamp and last_active_timestamp.

No anomaly results for an entity indicates that either the entity doesn't have any sample data or its model is removed from the model cache.

last_sample_timestamp shows the last document in the input data source index containing the entity, while last_active_timestamp shows the timestamp when the entitys model was last seen in the model cache.

Request

GET /_opensearch/_anomaly_detection/detectors/<detectorId>/_profile?_all=true&entity=i-00f28ec1eb8997686
{
  "category_field": "host",
  "value": "i-00f28ec1eb8997686",
  "is_active": true,
  "last_active_timestamp": 1604026394879,
  "last_sample_timestamp": 1604026394879,
  "init_progress": {
    "percentage": "100%"
  },
  "model": {
    "model_id": "TFUdd3UBBwIAGQeRh5IS_entity_i-00f28ec1eb8997686",
    "model_size_in_bytes": 712480,
    "node_id": "MQ-bTBW3Q2uU_2zX3pyEQg"
  },
  "state": "RUNNING"
}

For a historical detector, specify _all or ad_task to see information about its latest task:

Request

GET _opensearch/_anomaly_detection/detectors/<detectorId>/_profile?_all
GET _opensearch/_anomaly_detection/detectors/<detectorId>/_profile/ad_task

Sample Responses

{
  "ad_task": {
    "ad_task": {
      "task_id": "JXxyG3YBv5IHYYfMlFS2",
      "last_update_time": 1606778263543,
      "state": "STOPPED",
      "detector_id": "SwvxCHYBPhugfWD9QAL6",
      "task_progress": 0.010480972,
      "init_progress": 1,
      "current_piece": 1578140400000,
      "execution_start_time": 1606778262709,
      "is_latest": true,
      "task_type": "HISTORICAL",
      "detector": {
        "name": "historical_test1",
        "description": "test",
        "time_field": "timestamp",
        "indices": [
          "nab_art_daily_jumpsdown"
        ],
        "filter_query": {
          "match_all": {
            "boost": 1
          }
        },
        "detection_interval": {
          "period": {
            "interval": 5,
            "unit": "Minutes"
          }
        },
        "window_delay": {
          "period": {
            "interval": 1,
            "unit": "Minutes"
          }
        },
        "shingle_size": 8,
        "schema_version": 0,
        "feature_attributes": [
          {
            "feature_id": "zgvyCHYBPhugfWD9Ap_F",
            "feature_name": "sum",
            "feature_enabled": true,
            "aggregation_query": {
              "sum": {
                "sum": {
                  "field": "value"
                }
              }
            }
          },
          {
            "feature_id": "zwvyCHYBPhugfWD9Ap_G",
            "feature_name": "max",
            "feature_enabled": true,
            "aggregation_query": {
              "max": {
                "max": {
                  "field": "value"
                }
              }
            }
          }
        ],
        "ui_metadata": {
          "features": {
            "max": {
              "aggregationBy": "max",
              "aggregationOf": "value",
              "featureType": "simple_aggs"
            },
            "sum": {
              "aggregationBy": "sum",
              "aggregationOf": "value",
              "featureType": "simple_aggs"
            }
          },
          "filters": [],
          "filterType": "simple_filter"
        },
        "last_update_time": 1606467935713,
        "detector_type": "HISTORICAL_SIGLE_ENTITY",
        "detection_date_range": {
          "start_time": 1577840400000,
          "end_time": 1606463775000
        }
      }
    },
    "shingle_size": 8,
    "rcf_total_updates": 1994,
    "threshold_model_trained": true,
    "threshold_model_training_data_size": 0,
    "node_id": "Q9yznwxvTz-yJxtz7rJlLg"
  }
}