kolchfa-aws a97c719591
Add multimodal search/sparse search/pre- and post-processing function documentation (#5168)
* Add multimodal search documentation

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Text image embedding processor

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Add prerequisite

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Change query text

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Added bedrock connector tutorial and renamed ML TOC

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Name changes and rewording

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Change connector link

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Change link

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Implemented tech review comments

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Link fix and field name fix

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Add default text embedding preprocessing and post-processing functions

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Add sparse search documentation

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Fix links

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Pre/post processing function tech review comments

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Fix link

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Sparse search tech review comments

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Apply suggestions from code review

Co-authored-by: Melissa Vagi <vagimeli@amazon.com>
Signed-off-by: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com>

* Implemented doc review comments

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Add actual test sparse pipeline response

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Added tested examples

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Added model choice for sparse search

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Remove Bedrock connector

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Implemented tech review feedback

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Add that the model must be deployed to neural search

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Apply suggestions from code review

Co-authored-by: Nathan Bower <nbower@amazon.com>
Signed-off-by: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com>

* Link fix

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Add session token to sagemaker blueprint

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Formatted bullet points the same way

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Specified both model types in neural sparse query

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Added more explanation for default pre/post-processing functions

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Remove framework and extensibility references

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Minor rewording

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

---------

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>
Signed-off-by: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com>
Co-authored-by: Melissa Vagi <vagimeli@amazon.com>
Co-authored-by: Nathan Bower <nbower@amazon.com>
2023-10-16 10:45:35 -04:00

148 lines
5.1 KiB
Markdown

---
layout: default
title: Sparse encoding
parent: Ingest processors
grand_parent: Ingest APIs
nav_order: 240
---
# Sparse encoding
The `sparse_encoding` processor is used to generate a sparse vector/token and weights from text fields for [neural search]({{site.url}}{{site.baseurl}}/search-plugins/neural-search/) using sparse retrieval.
**PREREQUISITE**<br>
Before using the `sparse_encoding` processor, you must set up a machine learning (ML) model. For more information, see [Using custom models within OpenSearch]({{site.url}}{{site.baseurl}}/ml-commons-plugin/ml-framework/) and [Semantic search]({{site.url}}{{site.baseurl}}/ml-commons-plugin/semantic-search/).
{: .note}
The following is the syntax for the `sparse_encoding` processor:
```json
{
"sparse_encoding": {
"model_id": "<model_id>",
"field_map": {
"<input_field>": "<vector_field>"
}
}
}
```
{% include copy-curl.html %}
#### Configuration parameters
The following table lists the required and optional parameters for the `sparse_encoding` processor.
| Name | Data type | Required | Description |
|:---|:---|:---|:---|
`model_id` | String | Required | The ID of the model that will be used to generate the embeddings. The model must be deployed in OpenSearch before it can be used in neural search. For more information, see [Using custom models within OpenSearch]({{site.url}}{{site.baseurl}}/ml-commons-plugin/ml-framework/) and [Semantic search]({{site.url}}{{site.baseurl}}/ml-commons-plugin/semantic-search/).
`field_map` | Object | Required | Contains key-value pairs that specify the mapping of a text field to a `rank_features` field.
`field_map.<input_field>` | String | Required | The name of the field from which to obtain text for generating vector embeddings.
`field_map.<vector_field>` | String | Required | The name of the vector field in which to store the generated vector embeddings.
`description` | String | Optional | A brief description of the processor. |
`tag` | String | Optional | An identifier tag for the processor. Useful for debugging to distinguish between processors of the same type. |
## Using the processor
Follow these steps to use the processor in a pipeline. You must provide a model ID when creating the processor. For more information, see [Using custom models within OpenSearch]({{site.url}}{{site.baseurl}}/ml-commons-plugin/ml-framework/).
**Step 1: Create a pipeline.**
The following example request creates an ingest pipeline where the text from `passage_text` will be converted into text embeddings and the embeddings will be stored in `passage_embedding`:
```json
PUT /_ingest/pipeline/nlp-ingest-pipeline
{
"description": "A sparse encoding ingest pipeline",
"processors": [
{
"sparse_encoding": {
"model_id": "aP2Q8ooBpBj3wT4HVS8a",
"field_map": {
"passage_text": "passage_embedding"
}
}
}
]
}
```
{% include copy-curl.html %}
**Step 2 (Optional): Test the pipeline.**
It is recommended that you test your pipeline before you ingest documents.
{: .tip}
To test the pipeline, run the following query:
```json
POST _ingest/pipeline/nlp-ingest-pipeline/_simulate
{
"docs": [
{
"_index": "testindex1",
"_id": "1",
"_source":{
"passage_text": "hello world"
}
}
]
}
```
{% include copy-curl.html %}
#### Response
The response confirms that in addition to the `passage_text` field, the processor has generated text embeddings in the `passage_embedding` field:
```json
{
"docs" : [
{
"doc" : {
"_index" : "testindex1",
"_id" : "1",
"_source" : {
"passage_embedding" : {
"!" : 0.8708904,
"door" : 0.8587369,
"hi" : 2.3929274,
"worlds" : 2.7839446,
"yes" : 0.75845814,
"##world" : 2.5432441,
"born" : 0.2682308,
"nothing" : 0.8625516,
"goodbye" : 0.17146169,
"greeting" : 0.96817183,
"birth" : 1.2788506,
"come" : 0.1623208,
"global" : 0.4371151,
"it" : 0.42951578,
"life" : 1.5750692,
"thanks" : 0.26481047,
"world" : 4.7300377,
"tiny" : 0.5462298,
"earth" : 2.6555297,
"universe" : 2.0308156,
"worldwide" : 1.3903781,
"hello" : 6.696973,
"so" : 0.20279501,
"?" : 0.67785245
},
"passage_text" : "hello world"
},
"_ingest" : {
"timestamp" : "2023-10-11T22:35:53.654650086Z"
}
}
}
]
}
```
## Next steps
- To learn how to use the `neural_sparse` query for a sparse search, see [Neural sparse query]({{site.url}}{{site.baseurl}}/query-dsl/specialized/neural-sparse/).
- To learn more about sparse neural search, see [Sparse search]({{site.url}}{{site.baseurl}}/search-plugins/neural-search/).
- To learn more about using models in OpenSearch, see [Using custom models within OpenSearch]({{site.url}}{{site.baseurl}}/ml-commons-plugin/ml-framework/).
- For a semantic search tutorial, see [Semantic search]({{site.url}}{{site.baseurl}}/ml-commons-plugin/semantic-search/).