opensearch-docs-cn/_search-plugins/sql/ppl/functions.md

773 lines
19 KiB
Markdown

---
layout: default
title: Commands
parent: PPL – Piped Processing Language
grand_parent: SQL and PPL
nav_order: 2
redirect_from:
- /search-plugins/ppl/commands/
---
# Commands
`PPL` supports all [`SQL` common]({{site.url}}{{site.baseurl}}/search-plugins/sql/functions/) functions, including [relevance search]({{site.url}}{{site.baseurl}}/search-plugins/sql/full-text/), but also introduces few more functions (called `commands`) which are available in `PPL` only.
## dedup
The `dedup` (data deduplication) command removes duplicate documents defined by a field from the search result.
### Syntax
```sql
dedup [int] <field-list> [keepempty=<bool>] [consecutive=<bool>]
```
Field | Description | Type | Required | Default
:--- | :--- |:--- |:--- |:---
`int` | Retain the specified number of duplicate events for each combination. The number must be greater than 0. If you do not specify a number, only the first occurring event is kept and all other duplicates are removed from the results. | `string` | No | 1
`keepempty` | If true, keep the document if any field in the field list has a null value or a field missing. | `nested list of objects` | No | False
`consecutive` | If true, remove only consecutive events with duplicate combinations of values. | `Boolean` | No | False
`field-list` | Specify a comma-delimited field list. At least one field is required. | `String` or comma-separated list of strings | Yes | -
**Example 1: Dedup by one field**
To remove duplicate documents with the same gender:
```sql
search source=accounts | dedup gender | fields account_number, gender;
```
| account_number | gender
:--- | :--- |
1 | M
13 | F
**Example 2: Keep two duplicate documents**
To keep two duplicate documents with the same gender:
```sql
search source=accounts | dedup 2 gender | fields account_number, gender;
```
| account_number | gender
:--- | :--- |
1 | M
6 | M
13 | F
**Example 3: Keep or ignore an empty field by default**
To keep two duplicate documents with a `null` field value:
```sql
search source=accounts | dedup email keepempty=true | fields account_number, email;
```
| account_number | email
:--- | :--- |
1 | amberduke@pyrami.com
6 | hattiebond@netagy.com
13 | null
18 | daleadams@boink.com
To remove duplicate documents with the `null` field value:
```sql
search source=accounts | dedup email | fields account_number, email;
```
| account_number | email
:--- | :--- |
1 | amberduke@pyrami.com
6 | hattiebond@netagy.com
18 | daleadams@boink.com
**Example 4: Dedup of consecutive documents**
To remove duplicates of consecutive documents:
```sql
search source=accounts | dedup gender consecutive=true | fields account_number, gender;
```
| account_number | gender
:--- | :--- |
1 | M
13 | F
18 | M
### Limitations
The `dedup` command is not rewritten to OpenSearch DSL, it is only executed on the coordination node.
## eval
The `eval` command evaluates an expression and appends its result to the search result.
### Syntax
```sql
eval <field>=<expression> ["," <field>=<expression> ]...
```
Field | Description | Required
:--- | :--- |:---
`field` | If a field name does not exist, a new field is added. If the field name already exists, it's overwritten. | Yes
`expression` | Specify any supported expression. | Yes
**Example 1: Create a new field**
To create a new `doubleAge` field for each document. `doubleAge` is the result of `age` multiplied by 2:
```sql
search source=accounts | eval doubleAge = age * 2 | fields age, doubleAge;
```
| age | doubleAge
:--- | :--- |
32 | 64
36 | 72
28 | 56
33 | 66
*Example 2*: Overwrite the existing field
To overwrite the `age` field with `age` plus 1:
```sql
search source=accounts | eval age = age + 1 | fields age;
```
| age
:--- |
| 33
| 37
| 29
| 34
**Example 3: Create a new field with a field defined with the `eval` command**
To create a new field `ddAge`. `ddAge` is the result of `doubleAge` multiplied by 2, where `doubleAge` is defined in the `eval` command:
```sql
search source=accounts | eval doubleAge = age * 2, ddAge = doubleAge * 2 | fields age, doubleAge, ddAge;
```
| age | doubleAge | ddAge
:--- | :--- |
| 32 | 64 | 128
| 36 | 72 | 144
| 28 | 56 | 112
| 33 | 66 | 132
### Limitation
The ``eval`` command is not rewritten to OpenSearch DSL, it is only executed on the coordination node.
## fields
Use the `fields` command to keep or remove fields from a search result.
### Syntax
```sql
fields [+|-] <field-list>
```
Field | Description | Required | Default
:--- | :--- |:---|:---
`index` | Plus (+) keeps only fields specified in the field list. Minus (-) removes all fields specified in the field list. | No | +
`field list` | Specify a comma-delimited list of fields. | Yes | No default
**Example 1: Select specified fields from result**
To get `account_number`, `firstname`, and `lastname` fields from a search result:
```sql
search source=accounts | fields account_number, firstname, lastname;
```
| account_number | firstname | lastname
:--- | :--- |
| 1 | Amber | Duke
| 6 | Hattie | Bond
| 13 | Nanette | Bates
| 18 | Dale | Adams
**Example 2: Remove specified fields from a search result**
To remove the `account_number` field from the search results:
```sql
search source=accounts | fields account_number, firstname, lastname | fields - account_number;
```
| firstname | lastname
:--- | :--- |
| Amber | Duke
| Hattie | Bond
| Nanette | Bates
| Dale | Adams
## parse
Use the `parse` command to parse a text field using regular expression and append the result to the search result.
### Syntax
```sql
parse <field> <regular-expression>
```
Field | Description | Required
:--- | :--- |:---
field | A text field. | Yes
regular-expression | The regular expression used to extract new fields from the given test field. If a new field name exists, it will replace the original field. | Yes
The regular expression is used to match the whole text field of each document with Java regex engine. Each named capture group in the expression will become a new ``STRING`` field.
**Example 1: Create new field**
The example shows how to create new field `host` for each document. `host` will be the hostname after `@` in `email` field. Parsing a null field will return an empty string.
```sql
os> source=accounts | parse email '.+@(?<host>.+)' | fields email, host ;
fetched rows / total rows = 4/4
```
| email | host
:--- | :--- |
| amberduke@pyrami.com | pyrami.com
| hattiebond@netagy.com | netagy.com
| null | null
| daleadams@boink.com | boink.com
*Example 2*: Override the existing field
The example shows how to override the existing address field with street number removed.
```sql
os> source=accounts | parse address '\d+ (?<address>.+)' | fields address ;
fetched rows / total rows = 4/4
```
| address
:--- |
| Holmes Lane
| Bristol Street
| Madison Street
| Hutchinson Court
**Example 3: Filter and sort be casted parsed field**
The example shows how to sort street numbers that are higher than 500 in address field.
```sql
os> source=accounts | parse address '(?<streetNumber>\d+) (?<street>.+)' | where cast(streetNumber as int) > 500 | sort num(streetNumber) | fields streetNumber, street ;
fetched rows / total rows = 3/3
```
| streetNumber | street
:--- | :--- |
| 671 | Bristol Street
| 789 | Madison Street
| 880 | Holmes Lane
### Limitations
A few limitations exist when using the parse command:
- Fields defined by parse cannot be parsed again. For example, `source=accounts | parse address '\d+ (?<street>.+)' | parse street '\w+ (?<road>\w+)' ;` will fail to return any expressions.
- Fields defined by parse cannot be overridden with other commands. For example, when entering `source=accounts | parse address '\d+ (?<street>.+)' | eval street='1' | where street='1' ;` `where` will not match any documents since `street` cannot be overridden.
- The text field used by parse cannot be overridden. For example, when entering `source=accounts | parse address '\d+ (?<street>.+)' | eval address='1' ;` `street` will not be parse since address is overridden.
- Fields defined by parse cannot be filtered/sorted after using them in the `stats` command. For example, `source=accounts | parse email '.+@(?<host>.+)' | stats avg(age) by host | where host=pyrami.com ;` `where` will not parse the domain listed.
## rename
Use the `rename` command to rename one or more fields in the search result.
### Syntax
```sql
rename <source-field> AS <target-field>["," <source-field> AS <target-field>]...
```
Field | Description | Required
:--- | :--- |:---
`source-field` | The name of the field that you want to rename. | Yes
`target-field` | The name you want to rename to. | Yes
**Example 1: Rename one field**
Rename the `account_number` field as `an`:
```sql
search source=accounts | rename account_number as an | fields an;
```
| an
:--- |
| 1
| 6
| 13
| 18
**Example 2: Rename multiple fields**
Rename the `account_number` field as `an` and `employer` as `emp`:
```sql
search source=accounts | rename account_number as an, employer as emp | fields an, emp;
```
| an | emp
:--- | :--- |
| 1 | Pyrami
| 6 | Netagy
| 13 | Quility
| 18 | null
### Limitations
The `rename` command is not rewritten to OpenSearch DSL, it is only executed on the coordination node.
## sort
Use the `sort` command to sort search results by a specified field.
### Syntax
```sql
sort [count] <[+|-] sort-field>...
```
Field | Description | Required | Default
:--- | :--- |:---
`count` | The maximum number results to return from the sorted result. If count=0, all results are returned. | No | 1000
`[+|-]` | Use plus [+] to sort by ascending order and minus [-] to sort by descending order. | No | Ascending order
`sort-field` | Specify the field that you want to sort by. | Yes | -
**Example 1: Sort by one field**
To sort all documents by the `age` field in ascending order:
```sql
search source=accounts | sort age | fields account_number, age;
```
| account_number | age |
:--- | :--- |
| 13 | 28
| 1 | 32
| 18 | 33
| 6 | 36
**Example 2: Sort by one field and return all results**
To sort all documents by the `age` field in ascending order and specify count as 0 to get back all results:
```sql
search source=accounts | sort 0 age | fields account_number, age;
```
| account_number | age |
:--- | :--- |
| 13 | 28
| 1 | 32
| 18 | 33
| 6 | 36
**Example 3: Sort by one field in descending order**
To sort all documents by the `age` field in descending order:
```sql
search source=accounts | sort - age | fields account_number, age;
```
| account_number | age |
:--- | :--- |
| 6 | 36
| 18 | 33
| 1 | 32
| 13 | 28
**Example 4: Specify the number of sorted documents to return**
To sort all documents by the `age` field in ascending order and specify count as 2 to get back two results:
```sql
search source=accounts | sort 2 age | fields account_number, age;
```
| account_number | age |
:--- | :--- |
| 13 | 28
| 1 | 32
**Example 5: Sort by multiple fields**
To sort all documents by the `gender` field in ascending order and `age` field in descending order:
```sql
search source=accounts | sort + gender, - age | fields account_number, gender, age;
```
| account_number | gender | age |
:--- | :--- | :--- |
| 13 | F | 28
| 6 | M | 36
| 18 | M | 33
| 1 | M | 32
## stats
Use the `stats` command to aggregate from search results.
The following table lists the aggregation functions and also indicates how each one handles null or missing values:
Function | NULL | MISSING
:--- | :--- |:---
`COUNT` | Not counted | Not counted
`SUM` | Ignore | Ignore
`AVG` | Ignore | Ignore
`MAX` | Ignore | Ignore
`MIN` | Ignore | Ignore
### Syntax
```
stats <aggregation>... [by-clause]...
```
Field | Description | Required | Default
:--- | :--- |:---
`aggregation` | Specify a statistical aggregation function. The argument of this function must be a field. | Yes | 1000
`by-clause` | Specify one or more fields to group the results by. If not specified, the `stats` command returns only one row, which is the aggregation over the entire result set. | No | -
**Example 1: Calculate the average value of a field**
To calculate the average `age` of all documents:
```sql
search source=accounts | stats avg(age);
```
| avg(age)
:--- |
| 32.25
**Example 2: Calculate the average value of a field by group**
To calculate the average age grouped by gender:
```sql
search source=accounts | stats avg(age) by gender;
```
| gender | avg(age)
:--- | :--- |
| F | 28.0
| M | 33.666666666666664
**Example 3: Calculate the average and sum of a field by group**
To calculate the average and sum of age grouped by gender:
```sql
search source=accounts | stats avg(age), sum(age) by gender;
```
| gender | avg(age) | sum(age)
:--- | :--- |
| F | 28 | 28
| M | 33.666666666666664 | 101
**Example 4: Calculate the maximum value of a field**
To calculate the maximum age:
```sql
search source=accounts | stats max(age);
```
| max(age)
:--- |
| 36
**Example 5: Calculate the maximum and minimum value of a field by group**
To calculate the maximum and minimum age values grouped by gender:
```sql
search source=accounts | stats max(age), min(age) by gender;
```
| gender | min(age) | max(age)
:--- | :--- | :--- |
| F | 28 | 28
| M | 32 | 36
## where
Use the `where` command with a bool expression to filter the search result. The `where` command only returns the result when the bool expression evaluates to true.
### Syntax
```sql
where <boolean-expression>
```
Field | Description | Required
:--- | :--- |:---
`bool-expression` | An expression that evaluates to a boolean value. | No
**Example: Filter result set with a condition**
To get all documents from the `accounts` index where `account_number` is 1 or gender is `F`:
```sql
search source=accounts | where account_number=1 or gender=\"F\" | fields account_number, gender;
```
| account_number | gender
:--- | :--- |
| 1 | M
| 13 | F
## head
Use the `head` command to return the first N number of results in a specified search order.
### Syntax
```sql
head [N]
```
Field | Description | Required | Default
:--- | :--- |:---
`N` | Specify the number of results to return. | No | 10
**Example 1: Get the first 10 results**
To get the first 10 results:
```sql
search source=accounts | fields firstname, age | head;
```
| firstname | age
:--- | :--- |
| Amber | 32
| Hattie | 36
| Nanette | 28
**Example 2: Get the first N results**
To get the first two results:
```sql
search source=accounts | fields firstname, age | head 2;
```
| firstname | age
:--- | :--- |
| Amber | 32
| Hattie | 36
### Limitations
The `head` command is not rewritten to OpenSearch DSL, it is only executed on the coordination node.
## rare
Use the `rare` command to find the least common values of all fields in a field list.
A maximum of 10 results are returned for each distinct set of values of the group-by fields.
### Syntax
```sql
rare <field-list> [by-clause]
```
Field | Description | Required
:--- | :--- |:---
`field-list` | Specify a comma-delimited list of field names. | No
`by-clause` | Specify one or more fields to group the results by. | No
**Example 1: Find the least common values in a field**
To find the least common values of gender:
```sql
search source=accounts | rare gender;
```
| gender
:--- |
| F
| M
**Example 2: Find the least common values grouped by gender**
To find the least common age grouped by gender:
```sql
search source=accounts | rare age by gender;
```
| gender | age
:--- | :--- |
| F | 28
| M | 32
| M | 33
### Limitations
The `rare` command is not rewritten to OpenSearch DSL, it is only executed on the coordination node.
## top {#top-command}
Use the `top` command to find the most common values of all fields in the field list.
### Syntax
```sql
top [N] <field-list> [by-clause]
```
Field | Description | Default
:--- | :--- |:---
`N` | Specify the number of results to return. | 10
`field-list` | Specify a comma-delimited list of field names. | -
`by-clause` | Specify one or more fields to group the results by. | -
**Example 1: Find the most common values in a field**
To find the most common genders:
```sql
search source=accounts | top gender;
```
| gender
:--- |
| M
| F
**Example 2: Find the most common value in a field**
To find the most common gender:
```sql
search source=accounts | top 1 gender;
```
| gender
:--- |
| M
**Example 3: Find the most common values grouped by gender**
To find the most common age grouped by gender:
```sql
search source=accounts | top 1 age by gender;
```
| gender | age
:--- | :--- |
| F | 28
| M | 32
### Limitations
The `top` command is not rewritten to OpenSearch DSL, it is only executed on the coordination node.
## ad
The `ad` command applies the Random Cut Forest (RCF) algorithm in the [ML Commons plugin]({{site.url}}{{site.baseurl}}/ml-commons-plugin/index/) on the search result returned by a PPL command. Based on the input, the plugin uses two types of RCF algorithms: fixed in time RCF for processing time-series data and batch RCF for processing non-time-series data.
### Syntax: Fixed In Time RCF For Time-series Data Command
```sql
ad <shingle_size> <time_decay> <time_field>
```
Field | Description | Required
:--- | :--- |:---
`shingle_size` | A consecutive sequence of the most recent records. The default value is 8. | No
`time_decay` | Specifies how much of the recent past to consider when computing an anomaly score. The default value is 0.001. | No
`time_field` | Specifies the time filed for RCF to use as time-series data. Must be either a long value, such as the timestamp in miliseconds, or a string value in "yyyy-MM-dd HH:mm:ss".| Yes
### Syntax: Batch RCF for Non-time-series Data Command
```sql
ad <shingle_size> <time_decay>
```
Field | Description | Required
:--- | :--- |:---
`shingle_size` | A consecutive sequence of the most recent records. The default value is 8. | No
`time_decay` | Specifies how much of the recent past to consider when computing an anomaly score. The default value is 0.001. | No
**Example 1: Detecting events in New York City from taxi ridership data with time-series data**
The example trains a RCF model and use the model to detect anomalies in the time-series ridership data.
PPL query:
```sql
os> source=nyc_taxi | fields value, timestamp | AD time_field='timestamp' | where value=10844.0
```
value | timestamp | score | anomaly_grade
:--- | :--- |:--- | :---
10844.0 | 1404172800000 | 0.0 | 0.0
**Example 2: Detecting events in New York City from taxi ridership data with non-time-series data**
PPL query:
```sql
os> source=nyc_taxi | fields value | AD | where value=10844.0
```
value | score | anomalous
:--- | :--- |:---
| 10844.0 | 0.0 | false
## kmeans
The kmeans command applies the ML Commons plugin's kmeans algorithm to the provided PPL command's search results.
### Syntax
```sql
kmeans <cluster-number>
```
For `cluster-number`, enter the number of clusters you want to group your data points into.
**Example: Group Iris data**
The example shows how to classify three Iris species (Iris setosa, Iris virginica and Iris versicolor) based on the combination of four features measured from each sample: the length and the width of the sepals and petals.
PPL query:
```sql
os> source=iris_data | fields sepal_length_in_cm, sepal_width_in_cm, petal_length_in_cm, petal_width_in_cm | kmeans 3
```
sepal_length_in_cm | sepal_width_in_cm | petal_length_in_cm | petal_width_in_cm | ClusterID
:--- | :--- |:--- | :--- | :---
| 5.1 | 3.5 | 1.4 | 0.2 | 1
| 5.6 | 3.0 | 4.1 | 1.3 | 0
| 6.7 | 2.5 | 5.8 | 1.8 | 2