kolchfa-aws 88d06e13bd
Add full-text query documentation (#5428)
* Refactor full-text query documentation

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Add examples and parameter descriptions

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Add multi-match query

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Add query string field format

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Query string examples

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Add regular expressions and fuzziness

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Add wildcard and regex warning

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Added more query string format

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Added multi-field sections

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Rewrite minimum should match section

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Added allow expensive queries section

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Add simple query string query

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Small rewrites

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Add intervals query

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Include discover in query string syntax

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Link and index page fix

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Apply suggestions from code review

Co-authored-by: Melissa Vagi <vagimeli@amazon.com>
Signed-off-by: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com>

* Implemented editorial comments

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

---------

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>
Signed-off-by: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com>
Co-authored-by: Melissa Vagi <vagimeli@amazon.com>
2023-11-01 09:29:13 -04:00

32 lines
2.2 KiB
Markdown

---
layout: default
title: Term-level queries
has_children: true
has_toc: false
nav_order: 20
---
# Term-level queries
Term-level queries search an index for documents that contain an exact search term. Documents returned by a term-level query are not sorted by their relevance scores.
When working with text data, use term-level queries for fields mapped as `keyword` only.
Term-level queries are not suited for searching analyzed text fields. To return analyzed fields, use a [full-text query]({{site.url}}{{site.baseurl}}/opensearch/query-dsl/full-text/).
## Term-level query types
The following table lists all term-level query types.
Query type | Description
:--- | :---
[`term`]({{site.url}}{{site.baseurl}}/query-dsl/term/term/) | Searches for documents containing an exact term in a specific field.
[`terms`]({{site.url}}{{site.baseurl}}/query-dsl/term/terms/) | Searches for documents containing one or more terms in a specific field.
[`terms_set`]({{site.url}}{{site.baseurl}}/query-dsl/term/terms-set/) | Searches for documents that match a minimum number of terms in a specific field.
[`ids`]({{site.url}}{{site.baseurl}}/query-dsl/term/ids/) | Searches for documents by document ID.
[`range`]({{site.url}}{{site.baseurl}}/query-dsl/term/range/) | Searches for documents with field values in a specific range.
[`prefix`]({{site.url}}{{site.baseurl}}/query-dsl/term/prefix/) | Searches for documents containing terms that begin with a specific prefix.
[`exists`]({{site.url}}{{site.baseurl}}/query-dsl/term/exists/) | Searches for documents with any indexed value in a specific field.
[`fuzzy`]({{site.url}}{{site.baseurl}}/query-dsl/term/fuzzy/) | Searches for documents containing terms that are similar to the search term within the maximum allowed [Levenshtein distance](https://en.wikipedia.org/wiki/Levenshtein_distance). The Levenshtein distance measures the number of one-character changes needed to change one term to another term.
[`wildcard`]({{site.url}}{{site.baseurl}}/query-dsl/term/wildcard/) | Searches for documents containing terms that match a wildcard pattern.
[`regexp`]({{site.url}}{{site.baseurl}}/query-dsl/term/regexp/) | Searches for documents containing terms that match a regular expression.