791 lines
26 KiB
Markdown
791 lines
26 KiB
Markdown
---
|
|
layout: default
|
|
title: Anatomy of a workload
|
|
nav_order: 15
|
|
grand_parent: User guide
|
|
parent: Understanding workloads
|
|
---
|
|
|
|
# Anatomy of a workload
|
|
|
|
All workloads contain the following files and directories:
|
|
|
|
- [workload.json](#workloadjson): Contains all of the workload settings.
|
|
- [index.json](#indexjson): Contains the document mappings and parameters as well as index settings.
|
|
- [files.txt](#filestxt): Contains the data corpora file names.
|
|
- [_test-procedures](#_operations-and-_test-procedures): Most workloads contain only one default test procedure, which is configured in `default.json`.
|
|
- [_operations](#_operations-and-_test-procedures): Contains all of the operations used in test procedures.
|
|
- workload.py: Adds more dynamic functionality to the test.
|
|
|
|
## workload.json
|
|
|
|
The following example workload shows all of the essential elements needed to create a `workload.json` file. You can run this workload in your own benchmark configuration to understand how all of the elements work together:
|
|
|
|
```json
|
|
{
|
|
"description": "Tutorial benchmark for OpenSearch Benchmark",
|
|
"indices": [
|
|
{
|
|
"name": "movies",
|
|
"body": "index.json"
|
|
}
|
|
],
|
|
"corpora": [
|
|
{
|
|
"name": "movies",
|
|
"documents": [
|
|
{
|
|
"source-file": "movies-documents.json",
|
|
"document-count": 11658903, # Fetch document count from command line
|
|
"uncompressed-bytes": 1544799789 # Fetch uncompressed bytes from command line
|
|
}
|
|
]
|
|
}
|
|
],
|
|
"schedule": [
|
|
{
|
|
"operation": {
|
|
"operation-type": "create-index"
|
|
}
|
|
},
|
|
{
|
|
"operation": {
|
|
"operation-type": "cluster-health",
|
|
"request-params": {
|
|
"wait_for_status": "green"
|
|
},
|
|
"retry-until-success": true
|
|
}
|
|
},
|
|
{
|
|
"operation": {
|
|
"operation-type": "bulk",
|
|
"bulk-size": 5000
|
|
},
|
|
"warmup-time-period": 120,
|
|
"clients": 8
|
|
},
|
|
{
|
|
"operation": {
|
|
"name": "query-match-all",
|
|
"operation-type": "search",
|
|
"body": {
|
|
"query": {
|
|
"match_all": {}
|
|
}
|
|
}
|
|
},
|
|
"iterations": 1000,
|
|
"target-throughput": 100
|
|
}
|
|
]
|
|
}
|
|
```
|
|
|
|
A workload usually includes the following elements:
|
|
|
|
- [indices]({{site.url}}{{site.baseurl}}/benchmark/workloads/indices/): Defines the relevant indexes and index templates used for the workload.
|
|
- [corpora]({{site.url}}{{site.baseurl}}/benchmark/workloads/corpora/): Defines all document corpora used for the workload.
|
|
- `schedule`: Defines operations and the order in which the operations run inline. Alternatively, you can use `operations` to group operations and the `test_procedures` parameter to specify the order of operations.
|
|
- `operations`: **Optional**. Describes which operations are available for the workload and how they are parameterized.
|
|
|
|
### Indices
|
|
|
|
To create an index, specify its `name`. To add definitions to your index, use the `body` option and point it to the JSON file containing the index definitions. For more information, see [Indices]({{site.url}}{{site.baseurl}}/benchmark/workloads/indices/).
|
|
|
|
### Corpora
|
|
|
|
The `corpora` element requires the name of the index containing the document corpus, for example, `movies`, and a list of parameters that define the document corpora. This list includes the following parameters:
|
|
|
|
- `source-file`: The file name that contains the workload's corresponding documents. When using OpenSearch Benchmark locally, documents are contained in a JSON file. When providing a `base_url`, use a compressed file format: `.zip`, `.bz2`, `.zst`, `.gz`, `.tar`, `.tar.gz`, `.tgz`, or `.tar.bz2`. The compressed file must include one JSON file containing the name.
|
|
- `document-count`: The number of documents in the `source-file`, which determines which client indexes correlate to which parts of the document corpus. Each N client is assigned an Nth of the document corpus to ingest into the test cluster. When using a source that contains a document with a parent-child relationship, specify the number of parent documents.
|
|
- `uncompressed-bytes`: The size, in bytes, of the source file after decompression, indicating how much disk space the decompressed source file needs.
|
|
- `compressed-bytes`: The size, in bytes, of the source file before decompression. This can help you assess the amount of time needed for the cluster to ingest documents.
|
|
|
|
### Operations
|
|
|
|
The `operations` element lists the OpenSearch API operations performed by the workload. For example, you can list an operation named `create-index` that creates an index in the benchmark cluster to which OpenSearch Benchmark can write documents. Operations are usually listed inside of the `schedule` element.
|
|
|
|
### Schedule
|
|
|
|
The `schedule` element contains a list of operations that are run in a specified order, as shown in the following JSON example:
|
|
|
|
```json
|
|
"schedule": [
|
|
{
|
|
"operation": {
|
|
"operation-type": "create-index"
|
|
}
|
|
},
|
|
{
|
|
"operation": {
|
|
"operation-type": "cluster-health",
|
|
"request-params": {
|
|
"wait_for_status": "green"
|
|
},
|
|
"retry-until-success": true
|
|
}
|
|
},
|
|
{
|
|
"operation": {
|
|
"operation-type": "bulk",
|
|
"bulk-size": 5000
|
|
},
|
|
"warmup-time-period": 120,
|
|
"clients": 8
|
|
},
|
|
{
|
|
"operation": {
|
|
"name": "query-match-all",
|
|
"operation-type": "search",
|
|
"body": {
|
|
"query": {
|
|
"match_all": {}
|
|
}
|
|
}
|
|
},
|
|
"iterations": 1000,
|
|
"target-throughput": 100
|
|
}
|
|
]
|
|
}
|
|
```
|
|
|
|
According to this `schedule`, the actions will run in the following order:
|
|
|
|
1. The `create-index` operation creates an index. The index remains empty until the `bulk` operation adds documents with benchmarked data.
|
|
2. The `cluster-health` operation assesses the cluster's health before running the workload. In the JSON example, the workload waits until the cluster's health status is `green`.
|
|
- The `bulk` operation runs the `bulk` API to index `5000` documents simultaneously.
|
|
- Before benchmarking, the workload waits until the specified `warmup-time-period` passes. In the JSON example, the warmup period is `120` seconds.
|
|
3. The `clients` field defines the number of clients, in this example, eight, that will run the bulk indexing operation concurrently.
|
|
4. The `search` operation runs a `match_all` query to match all documents after they have been indexed by the `bulk` API using the specified clients.
|
|
- The `iterations` field defines the number of times each client runs the `search` operation. The benchmark report automatically adjusts the percentile numbers based on this number. To generate a precise percentile, the benchmark needs to run at least 1,000 iterations.
|
|
- The `target-throughput` field defines the number of requests per second that each client performs. When set, the setting can help reduce benchmark latency. For example, a `target-throughput` of 100 requests divided by 8 clients means that each client will issue 12 requests per second. For more information about how target throughput is defined in OpenSearch Benchmark, see [Throughput and latency](https://opensearch.org/docs/latest/benchmark/user-guide/concepts/#throughput-and-latency).
|
|
|
|
## index.json
|
|
|
|
The `index.json` file defines the data mappings, indexing parameters, and index settings for workload documents during `create-index` operations.
|
|
|
|
When OpenSearch Benchmark creates an index for the workload, it uses the index settings and mappings template in the `index.json` file. Mappings in the `index.json` file are based on the mappings of a single document from the workload's corpus, which is stored in the `files.txt` file. The following is an example of the `index.json` file for the `nyc_taxis` workload. You can customize the fields, such as `number_of_shards`, `number_of_replicas`, `query_cache_enabled`, and `requests_cache_enabled`.
|
|
|
|
```json
|
|
{
|
|
"settings": {
|
|
"index.number_of_shards": {% raw %}{{number_of_shards | default(1)}}{% endraw %},
|
|
"index.number_of_replicas": {% raw %}{{number_of_replicas | default(0)}}{% endraw %},
|
|
"index.queries.cache.enabled": {% raw %}{{query_cache_enabled | default(false) | tojson}}{% endraw %},
|
|
"index.requests.cache.enable": {% raw %}{{requests_cache_enabled | default(false) | tojson}}{% endraw %}
|
|
},
|
|
"mappings": {
|
|
"_source": {
|
|
"enabled": {% raw %}{{ source_enabled | default(true) | tojson }}{% endraw %}
|
|
},
|
|
"properties": {
|
|
"surcharge": {
|
|
"scaling_factor": 100,
|
|
"type": "scaled_float"
|
|
},
|
|
"dropoff_datetime": {
|
|
"type": "date",
|
|
"format": "yyyy-MM-dd HH:mm:ss"
|
|
},
|
|
"trip_type": {
|
|
"type": "keyword"
|
|
},
|
|
"mta_tax": {
|
|
"scaling_factor": 100,
|
|
"type": "scaled_float"
|
|
},
|
|
"rate_code_id": {
|
|
"type": "keyword"
|
|
},
|
|
"passenger_count": {
|
|
"type": "integer"
|
|
},
|
|
"pickup_datetime": {
|
|
"type": "date",
|
|
"format": "yyyy-MM-dd HH:mm:ss"
|
|
},
|
|
"tolls_amount": {
|
|
"scaling_factor": 100,
|
|
"type": "scaled_float"
|
|
},
|
|
"tip_amount": {
|
|
"type": "half_float"
|
|
},
|
|
"payment_type": {
|
|
"type": "keyword"
|
|
},
|
|
"extra": {
|
|
"scaling_factor": 100,
|
|
"type": "scaled_float"
|
|
},
|
|
"vendor_id": {
|
|
"type": "keyword"
|
|
},
|
|
"store_and_fwd_flag": {
|
|
"type": "keyword"
|
|
},
|
|
"improvement_surcharge": {
|
|
"scaling_factor": 100,
|
|
"type": "scaled_float"
|
|
},
|
|
"fare_amount": {
|
|
"scaling_factor": 100,
|
|
"type": "scaled_float"
|
|
},
|
|
"ehail_fee": {
|
|
"scaling_factor": 100,
|
|
"type": "scaled_float"
|
|
},
|
|
"cab_color": {
|
|
"type": "keyword"
|
|
},
|
|
"dropoff_location": {
|
|
"type": "geo_point"
|
|
},
|
|
"vendor_name": {
|
|
"type": "text"
|
|
},
|
|
"total_amount": {
|
|
"scaling_factor": 100,
|
|
"type": "scaled_float"
|
|
},
|
|
"trip_distance": {% raw %}{%- if trip_distance_mapping is defined %} {{ trip_distance_mapping | tojson }} {%- else %}{% endraw %} {
|
|
"scaling_factor": 100,
|
|
"type": "scaled_float"
|
|
}{% raw %}{%- endif %}{% endraw %},
|
|
"pickup_location": {
|
|
"type": "geo_point"
|
|
}
|
|
},
|
|
"dynamic": "strict"
|
|
}
|
|
}
|
|
```
|
|
|
|
## files.txt
|
|
|
|
The `files.txt` file lists the files that store the workload data, which are typically stored in a zipped JSON file.
|
|
|
|
## _operations and _test-procedures
|
|
|
|
To make the workload more human-readable, `_operations` and `_test-procedures` are separated into two directories.
|
|
|
|
The `_operations` directory contains a `default.json` file that lists all of the supported operations that the test procedure can use. Some workloads, such as `nyc_taxis`, contain an additional `.json` file that lists feature-specific operations, such as `snapshot` operations. The following JSON example shows a list of operations from the `nyc_taxis` workload:
|
|
|
|
```json
|
|
{
|
|
"name": "index",
|
|
"operation-type": "bulk",
|
|
"bulk-size": {% raw %}{{bulk_size | default(10000)}}{% endraw %},
|
|
"ingest-percentage": {% raw %}{{ingest_percentage | default(100)}}{% endraw %}
|
|
},
|
|
{
|
|
"name": "update",
|
|
"operation-type": "bulk",
|
|
"bulk-size": {% raw %}{{bulk_size | default(10000)}},
|
|
"ingest-percentage": {{ingest_percentage | default(100)}},
|
|
"conflicts": "{{conflicts | default('random')}}",
|
|
"on-conflict": "{{on_conflict | default('update')}}",
|
|
"conflict-probability": {{conflict_probability | default(25)}},
|
|
"recency": {{recency | default(0)}}{% endraw %}
|
|
},
|
|
{
|
|
"name": "wait-until-merges-finish",
|
|
"operation-type": "index-stats",
|
|
"index": "_all",
|
|
"condition": {
|
|
"path": "_all.total.merges.current",
|
|
"expected-value": 0
|
|
},
|
|
"retry-until-success": true,
|
|
"include-in-reporting": false
|
|
},
|
|
{
|
|
"name": "default",
|
|
"operation-type": "search",
|
|
"body": {
|
|
"query": {
|
|
"match_all": {}
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"name": "range",
|
|
"operation-type": "search",
|
|
"body": {
|
|
"query": {
|
|
"range": {
|
|
"total_amount": {
|
|
"gte": 5,
|
|
"lt": 15
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"name": "distance_amount_agg",
|
|
"operation-type": "search",
|
|
"body": {
|
|
"size": 0,
|
|
"query": {
|
|
"bool": {
|
|
"filter": {
|
|
"range": {
|
|
"trip_distance": {
|
|
"lt": 50,
|
|
"gte": 0
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"aggs": {
|
|
"distance_histo": {
|
|
"histogram": {
|
|
"field": "trip_distance",
|
|
"interval": 1
|
|
},
|
|
"aggs": {
|
|
"total_amount_stats": {
|
|
"stats": {
|
|
"field": "total_amount"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"name": "autohisto_agg",
|
|
"operation-type": "search",
|
|
"body": {
|
|
"size": 0,
|
|
"query": {
|
|
"range": {
|
|
"dropoff_datetime": {
|
|
"gte": "01/01/2015",
|
|
"lte": "21/01/2015",
|
|
"format": "dd/MM/yyyy"
|
|
}
|
|
}
|
|
},
|
|
"aggs": {
|
|
"dropoffs_over_time": {
|
|
"auto_date_histogram": {
|
|
"field": "dropoff_datetime",
|
|
"buckets": 20
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"name": "date_histogram_agg",
|
|
"operation-type": "search",
|
|
"body": {
|
|
"size": 0,
|
|
"query": {
|
|
"range": {
|
|
"dropoff_datetime": {
|
|
"gte": "01/01/2015",
|
|
"lte": "21/01/2015",
|
|
"format": "dd/MM/yyyy"
|
|
}
|
|
}
|
|
},
|
|
"aggs": {
|
|
"dropoffs_over_time": {
|
|
"date_histogram": {
|
|
"field": "dropoff_datetime",
|
|
"calendar_interval": "day"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"name": "date_histogram_calendar_interval",
|
|
"operation-type": "search",
|
|
"body": {
|
|
"size": 0,
|
|
"query": {
|
|
"range": {
|
|
"dropoff_datetime": {
|
|
"gte": "2015-01-01 00:00:00",
|
|
"lt": "2016-01-01 00:00:00"
|
|
}
|
|
}
|
|
},
|
|
"aggs": {
|
|
"dropoffs_over_time": {
|
|
"date_histogram": {
|
|
"field": "dropoff_datetime",
|
|
"calendar_interval": "month"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"name": "date_histogram_calendar_interval_with_tz",
|
|
"operation-type": "search",
|
|
"body": {
|
|
"size": 0,
|
|
"query": {
|
|
"range": {
|
|
"dropoff_datetime": {
|
|
"gte": "2015-01-01 00:00:00",
|
|
"lt": "2016-01-01 00:00:00"
|
|
}
|
|
}
|
|
},
|
|
"aggs": {
|
|
"dropoffs_over_time": {
|
|
"date_histogram": {
|
|
"field": "dropoff_datetime",
|
|
"calendar_interval": "month",
|
|
"time_zone": "America/New_York"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"name": "date_histogram_fixed_interval",
|
|
"operation-type": "search",
|
|
"body": {
|
|
"size": 0,
|
|
"query": {
|
|
"range": {
|
|
"dropoff_datetime": {
|
|
"gte": "2015-01-01 00:00:00",
|
|
"lt": "2016-01-01 00:00:00"
|
|
}
|
|
}
|
|
},
|
|
"aggs": {
|
|
"dropoffs_over_time": {
|
|
"date_histogram": {
|
|
"field": "dropoff_datetime",
|
|
"fixed_interval": "60d"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"name": "date_histogram_fixed_interval_with_tz",
|
|
"operation-type": "search",
|
|
"body": {
|
|
"size": 0,
|
|
"query": {
|
|
"range": {
|
|
"dropoff_datetime": {
|
|
"gte": "2015-01-01 00:00:00",
|
|
"lt": "2016-01-01 00:00:00"
|
|
}
|
|
}
|
|
},
|
|
"aggs": {
|
|
"dropoffs_over_time": {
|
|
"date_histogram": {
|
|
"field": "dropoff_datetime",
|
|
"fixed_interval": "60d",
|
|
"time_zone": "America/New_York"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"name": "date_histogram_fixed_interval_with_metrics",
|
|
"operation-type": "search",
|
|
"body": {
|
|
"size": 0,
|
|
"query": {
|
|
"range": {
|
|
"dropoff_datetime": {
|
|
"gte": "2015-01-01 00:00:00",
|
|
"lt": "2016-01-01 00:00:00"
|
|
}
|
|
}
|
|
},
|
|
"aggs": {
|
|
"dropoffs_over_time": {
|
|
"date_histogram": {
|
|
"field": "dropoff_datetime",
|
|
"fixed_interval": "60d"
|
|
},
|
|
"aggs": {
|
|
"total_amount": { "stats": { "field": "total_amount" } },
|
|
"tip_amount": { "stats": { "field": "tip_amount" } },
|
|
"trip_distance": { "stats": { "field": "trip_distance" } }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"name": "auto_date_histogram",
|
|
"operation-type": "search",
|
|
"body": {
|
|
"size": 0,
|
|
"query": {
|
|
"range": {
|
|
"dropoff_datetime": {
|
|
"gte": "2015-01-01 00:00:00",
|
|
"lt": "2016-01-01 00:00:00"
|
|
}
|
|
}
|
|
},
|
|
"aggs": {
|
|
"dropoffs_over_time": {
|
|
"auto_date_histogram": {
|
|
"field": "dropoff_datetime",
|
|
"buckets": "12"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"name": "auto_date_histogram_with_tz",
|
|
"operation-type": "search",
|
|
"body": {
|
|
"size": 0,
|
|
"query": {
|
|
"range": {
|
|
"dropoff_datetime": {
|
|
"gte": "2015-01-01 00:00:00",
|
|
"lt": "2016-01-01 00:00:00"
|
|
}
|
|
}
|
|
},
|
|
"aggs": {
|
|
"dropoffs_over_time": {
|
|
"auto_date_histogram": {
|
|
"field": "dropoff_datetime",
|
|
"buckets": "13",
|
|
"time_zone": "America/New_York"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"name": "auto_date_histogram_with_metrics",
|
|
"operation-type": "search",
|
|
"body": {
|
|
"size": 0,
|
|
"query": {
|
|
"range": {
|
|
"dropoff_datetime": {
|
|
"gte": "2015-01-01 00:00:00",
|
|
"lt": "2016-01-01 00:00:00"
|
|
}
|
|
}
|
|
},
|
|
"aggs": {
|
|
"dropoffs_over_time": {
|
|
"auto_date_histogram": {
|
|
"field": "dropoff_datetime",
|
|
"buckets": "12"
|
|
},
|
|
"aggs": {
|
|
"total_amount": { "stats": { "field": "total_amount" } },
|
|
"tip_amount": { "stats": { "field": "tip_amount" } },
|
|
"trip_distance": { "stats": { "field": "trip_distance" } }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"name": "desc_sort_tip_amount",
|
|
"operation-type": "search",
|
|
"index": "nyc_taxis",
|
|
"body": {
|
|
"query": {
|
|
"match_all": {}
|
|
},
|
|
"sort" : [
|
|
{"tip_amount" : "desc"}
|
|
]
|
|
}
|
|
},
|
|
{
|
|
"name": "asc_sort_tip_amount",
|
|
"operation-type": "search",
|
|
"index": "nyc_taxis",
|
|
"body": {
|
|
"query": {
|
|
"match_all": {}
|
|
},
|
|
"sort" : [
|
|
{"tip_amount" : "asc"}
|
|
]
|
|
}
|
|
}
|
|
```
|
|
|
|
The `_test-procedures` directory contains a `default.json` file that sets the order of operations performed by the workload. Similar to the `_operations` directory, the `_test-procedures` directory can also contain feature-specific test procedures, such as `searchable_snapshots.json` for `nyc_taxis`. The following examples show the searchable snapshots test procedures for `nyc_taxis`:
|
|
|
|
```json
|
|
{
|
|
"name": "searchable-snapshot",
|
|
"description": "Measuring performance for Searchable Snapshot feature. Based on the default test procedure 'append-no-conflicts'.",
|
|
"schedule": [
|
|
{
|
|
"operation": "delete-index"
|
|
},
|
|
{
|
|
"operation": {
|
|
"operation-type": "create-index",
|
|
"settings": {% raw %}{%- if index_settings is defined %} {{ index_settings | tojson }} {%- else %}{
|
|
"index.codec": "best_compression",
|
|
"index.refresh_interval": "30s",
|
|
"index.translog.flush_threshold_size": "4g"
|
|
}{%- endif %}{% endraw %}
|
|
}
|
|
},
|
|
{
|
|
"name": "check-cluster-health",
|
|
"operation": {
|
|
"operation-type": "cluster-health",
|
|
"index": "nyc_taxis",
|
|
"request-params": {
|
|
"wait_for_status": {% raw %}"{{ cluster_health | default('green') }}"{% endraw %},
|
|
"wait_for_no_relocating_shards": "true"
|
|
},
|
|
"retry-until-success": true
|
|
}
|
|
},
|
|
{
|
|
"operation": "index",
|
|
"warmup-time-period": 240,
|
|
"clients": {% raw %}{{ bulk_indexing_clients | default(8) }},
|
|
"ignore-response-error-level": "{{ error_level | default('non-fatal') }}"{% endraw %}
|
|
},
|
|
{
|
|
"name": "refresh-after-index",
|
|
"operation": "refresh"
|
|
},
|
|
{
|
|
"operation": {
|
|
"operation-type": "force-merge",
|
|
"request-timeout": 7200
|
|
{% raw %}{%- if force_merge_max_num_segments is defined %}{% endraw %},
|
|
"max-num-segments": {% raw %}{{ force_merge_max_num_segments | tojson }}{% endraw %}
|
|
{% raw %}{%- endif %}{% endraw %}
|
|
}
|
|
},
|
|
{
|
|
"name": "refresh-after-force-merge",
|
|
"operation": "refresh"
|
|
},
|
|
{
|
|
"operation": "wait-until-merges-finish"
|
|
},
|
|
{
|
|
"operation": "create-snapshot-repository"
|
|
},
|
|
{
|
|
"operation": "delete-snapshot"
|
|
},
|
|
{
|
|
"operation": "create-snapshot"
|
|
},
|
|
{
|
|
"operation": "wait-for-snapshot-creation"
|
|
},
|
|
{
|
|
"operation": {
|
|
"name": "delete-local-index",
|
|
"operation-type": "delete-index"
|
|
}
|
|
},
|
|
{
|
|
"operation": "restore-snapshot"
|
|
},
|
|
{
|
|
"operation": "default",
|
|
"warmup-iterations": 50,
|
|
"iterations": 100
|
|
{% raw %}{%- if not target_throughput %}{% endraw %}
|
|
,"target-throughput": 3
|
|
{% raw %}{%- elif target_throughput is string and target_throughput.lower() == 'none' %}{% endraw %}
|
|
{% raw %}{%- else %}{% endraw %}
|
|
,"target-throughput": {% raw %}{{ target_throughput | tojson }}{% endraw %}
|
|
{% raw %}{%- endif %}{% endraw %}
|
|
{% raw %}{%-if search_clients is defined and search_clients %}{% endraw %}
|
|
,"clients": {% raw %}{{ search_clients | tojson}}{% endraw %}
|
|
{% raw %}{%- endif %}{% endraw %}
|
|
},
|
|
{
|
|
"operation": "range",
|
|
"warmup-iterations": 50,
|
|
"iterations": 100
|
|
{% raw %}{%- if not target_throughput %}{% endraw %}
|
|
,"target-throughput": 0.7
|
|
{% raw %}{%- elif target_throughput is string and target_throughput.lower() == 'none' %}{% endraw %}
|
|
{% raw %}{%- else %}{% endraw %}
|
|
,"target-throughput": {% raw %}{{ target_throughput | tojson }}{% endraw %}
|
|
{% raw %}{%- endif %}{% endraw %}
|
|
{% raw %}{%-if search_clients is defined and search_clients %}{% endraw %}
|
|
,"clients": {% raw %}{{ search_clients | tojson}}{% endraw %}
|
|
{% raw %}{%- endif %}{% endraw %}
|
|
},
|
|
{
|
|
"operation": "distance_amount_agg",
|
|
"warmup-iterations": 50,
|
|
"iterations": 50
|
|
{% raw %}{%- if not target_throughput %}{% endraw %}
|
|
,"target-throughput": 2
|
|
{% raw %}{%- elif target_throughput is string and target_throughput.lower() == 'none' %}{% endraw %}
|
|
{% raw %}{%- else %}{% endraw %}
|
|
,"target-throughput": {% raw %}{{ target_throughput | tojson }}{% endraw %}
|
|
{% raw %}{%- endif %}{% endraw %}
|
|
{% raw %}{%-if search_clients is defined and search_clients %}{% endraw %}
|
|
,"clients": {% raw %}{{ search_clients | tojson}}{% endraw %}
|
|
{% raw %}{%- endif %}{% endraw %}
|
|
},
|
|
{
|
|
"operation": "autohisto_agg",
|
|
"warmup-iterations": 50,
|
|
"iterations": 100
|
|
{% raw %}{%- if not target_throughput %}{% endraw %}
|
|
,"target-throughput": 1.5
|
|
{% raw %}{%- elif target_throughput is string and target_throughput.lower() == 'none' %}{% endraw %}
|
|
{% raw %}{%- else %}{% endraw %}
|
|
,"target-throughput": {% raw %}{{ target_throughput | tojson }}{% endraw %}
|
|
{% raw %}{%- endif %}{% endraw %}
|
|
{% raw %}{%-if search_clients is defined and search_clients %}{% endraw %}
|
|
,"clients": {% raw %}{{ search_clients | tojson}}{% endraw %}
|
|
{% raw %}{%- endif %}{% endraw %}
|
|
},
|
|
{
|
|
"operation": "date_histogram_agg",
|
|
"warmup-iterations": 50,
|
|
"iterations": 100
|
|
{% raw %}{%- if not target_throughput %}{% endraw %}
|
|
,"target-throughput": 1.5
|
|
{% raw %}{%- elif target_throughput is string and target_throughput.lower() == 'none' %}{% endraw %}
|
|
{% raw %}{%- else %}{% endraw %}
|
|
,"target-throughput": {% raw %}{{ target_throughput | tojson }}{% endraw %}
|
|
{% raw %}{%- endif %}{% endraw %}
|
|
{% raw %}{%-if search_clients is defined and search_clients %}{% endraw %}
|
|
,"clients": {% raw %}{{ search_clients | tojson}}{% endraw %}
|
|
{% raw %}{%- endif %}{% endraw %}
|
|
}
|
|
]
|
|
}
|
|
```
|
|
|
|
## Next steps
|
|
|
|
Now that you have familiarized yourself with the anatomy of a workload, see the criteria for [Choosing a workload]({{site.url}}{{site.baseurl}}/benchmark/user-guide/understanding-workloads/choosing-a-workload/).
|