mirror of
https://github.com/iSharkFly-Docs/opensearch-docs-cn
synced 2025-03-09 14:38:01 +00:00
* Refactor ML section - local and remote models Signed-off-by: Fanit Kolchina <kolchfa@amazon.com> * Added command to calculate checksum Signed-off-by: Fanit Kolchina <kolchfa@amazon.com> * Add ONNX format to register API Signed-off-by: Fanit Kolchina <kolchfa@amazon.com> * Add sparse encoding predict example Signed-off-by: Fanit Kolchina <kolchfa@amazon.com> * Add API section Signed-off-by: Fanit Kolchina <kolchfa@amazon.com> * Refactor the API section Signed-off-by: Fanit Kolchina <kolchfa@amazon.com> * Typo Signed-off-by: Fanit Kolchina <kolchfa@amazon.com> * Implemented Vale comments Signed-off-by: Fanit Kolchina <kolchfa@amazon.com> * Add get connector API Signed-off-by: Fanit Kolchina <kolchfa@amazon.com> * Reword heading Signed-off-by: Fanit Kolchina <kolchfa@amazon.com> * Addressed tech review comments Signed-off-by: Fanit Kolchina <kolchfa@amazon.com> * Apply suggestions from code review Co-authored-by: Melissa Vagi <vagimeli@amazon.com> Signed-off-by: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com> --------- Signed-off-by: Fanit Kolchina <kolchfa@amazon.com> Signed-off-by: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com> Co-authored-by: Melissa Vagi <vagimeli@amazon.com>
1.5 KiB
1.5 KiB
layout | title | parent | grand_parent | has_children | nav_order |
---|---|---|---|---|---|
default | Train | Train and Predict APIs | ML Commons API | true | 10 |
Train
The train API operation trains a model based on a selected algorithm. Training can occur both synchronously and asynchronously.
Example request
The following examples use the k-means algorithm to train index data.
Train with k-means synchronously
POST /_plugins/_ml/_train/kmeans
{
"parameters": {
"centroids": 3,
"iterations": 10,
"distance_type": "COSINE"
},
"input_query": {
"_source": ["petal_length_in_cm", "petal_width_in_cm"],
"size": 10000
},
"input_index": [
"iris_data"
]
}
{% include copy-curl.html %}
Train with k-means asynchronously
POST /_plugins/_ml/_train/kmeans?async=true
{
"parameters": {
"centroids": 3,
"iterations": 10,
"distance_type": "COSINE"
},
"input_query": {
"_source": ["petal_length_in_cm", "petal_width_in_cm"],
"size": 10000
},
"input_index": [
"iris_data"
]
}
{% include copy-curl.html %}
Example response
Synchronous
For synchronous responses, the API returns the model_id
, which can be used to get or delete a model.
{
"model_id" : "lblVmX8BO5w8y8RaYYvN",
"status" : "COMPLETED"
}
Asynchronous
For asynchronous responses, the API returns the task_id
, which can be used to get or delete a task.
{
"task_id" : "lrlamX8BO5w8y8Ra2otd",
"status" : "CREATED"
}