1144 lines
25 KiB
Markdown
1144 lines
25 KiB
Markdown
---
|
|
layout: default
|
|
title: API
|
|
has_children: false
|
|
nav_order: 99
|
|
---
|
|
|
|
# ML Commons API
|
|
|
|
---
|
|
|
|
#### Table of contents
|
|
- TOC
|
|
{:toc}
|
|
|
|
|
|
---
|
|
|
|
The Machine Learning (ML) commons API lets you train ML algorithms synchronously and asynchronously, make predictions with that trained model, and train and predict with the same data set.
|
|
|
|
In order to train tasks through the API, three inputs are required.
|
|
|
|
- Algorithm name: Must be one of a [FunctionName](https://github.com/opensearch-project/ml-commons/blob/1.3/common/src/main/java/org/opensearch/ml/common/parameter/FunctionName.java). This determines what algorithm the ML Engine runs. To add a new function, see [How To Add a New Function](https://github.com/opensearch-project/ml-commons/blob/main/docs/how-to-add-new-function.md).
|
|
- Model hyper parameters: Adjust these parameters to make the model train better.
|
|
- Input data: The data input that trains the ML model, or applies the ML models to predictions. You can input data in two ways, query against your index or use data frame.
|
|
|
|
## Train model
|
|
|
|
Training can occur both synchronously and asynchronously.
|
|
|
|
### Request
|
|
|
|
The following examples use the kmeans algorithm to train index data.
|
|
|
|
**Train with kmeans synchronously**
|
|
|
|
```json
|
|
POST /_plugins/_ml/_train/kmeans
|
|
{
|
|
"parameters": {
|
|
"centroids": 3,
|
|
"iterations": 10,
|
|
"distance_type": "COSINE"
|
|
},
|
|
"input_query": {
|
|
"_source": ["petal_length_in_cm", "petal_width_in_cm"],
|
|
"size": 10000
|
|
},
|
|
"input_index": [
|
|
"iris_data"
|
|
]
|
|
}
|
|
```
|
|
|
|
**Train with kmeans asynchronously**
|
|
|
|
```json
|
|
POST /_plugins/_ml/_train/kmeans?async=true
|
|
{
|
|
"parameters": {
|
|
"centroids": 3,
|
|
"iterations": 10,
|
|
"distance_type": "COSINE"
|
|
},
|
|
"input_query": {
|
|
"_source": ["petal_length_in_cm", "petal_width_in_cm"],
|
|
"size": 10000
|
|
},
|
|
"input_index": [
|
|
"iris_data"
|
|
]
|
|
}
|
|
```
|
|
|
|
### Response
|
|
|
|
**Synchronously**
|
|
|
|
For synchronous responses, the API returns the model_id, which can be used to get or delete a model.
|
|
|
|
```json
|
|
{
|
|
"model_id" : "lblVmX8BO5w8y8RaYYvN",
|
|
"status" : "COMPLETED"
|
|
}
|
|
```
|
|
|
|
**Asynchronously**
|
|
|
|
For asynchronous responses, the API returns the task_id, which can be used to get or delete a task.
|
|
|
|
```json
|
|
{
|
|
"task_id" : "lrlamX8BO5w8y8Ra2otd",
|
|
"status" : "CREATED"
|
|
}
|
|
```
|
|
|
|
## Get model information
|
|
|
|
You can retrieve information on your model using the model_id.
|
|
|
|
```json
|
|
GET /_plugins/_ml/models/<model-id>
|
|
```
|
|
|
|
The API returns information on the model, the algorithm used, and the content found within the model.
|
|
|
|
```json
|
|
{
|
|
"name" : "KMEANS",
|
|
"algorithm" : "KMEANS",
|
|
"version" : 1,
|
|
"content" : ""
|
|
}
|
|
```
|
|
|
|
## Upload a model
|
|
|
|
Use the upload operation to upload a custom model to a model index. ML Commons splits the model into smaller chunks and saves those chunks in the model's index.
|
|
|
|
```json
|
|
POST /_plugins/_ml/models/_upload
|
|
```
|
|
|
|
### Request fields
|
|
|
|
All request fields are required.
|
|
|
|
Field | Data type | Description
|
|
:--- | :--- | :---
|
|
`name`| string | The name of the model. |
|
|
`version` | integer | The version number of the model. |
|
|
`model_format` | string | The portable format of the model file. Currently only supports `TORCH_SCRIPT`. |
|
|
`model_config` | json object | The model's configuration, including the `model_type`, `embedding_dimension`, and `framework_type`. `all_config` is an optional JSON string which contains all model configurations. |
|
|
`url` | string | The URL which contains the model. |
|
|
|
|
### Example
|
|
|
|
The following sample request uploads version `1.0.0` of an NLP sentence transformation model named `all-MiniLM-L6-v2`.
|
|
|
|
```json
|
|
POST /_plugins/_ml/models/_upload
|
|
{
|
|
"name": "all-MiniLM-L6-v2",
|
|
"version": "1.0.0",
|
|
"description": "test model",
|
|
"model_format": "TORCH_SCRIPT",
|
|
"model_config": {
|
|
"model_type": "bert",
|
|
"embedding_dimension": 384,
|
|
"framework_type": "sentence_transformers",
|
|
},
|
|
"url": "https://github.com/opensearch-project/ml-commons/raw/2.x/ml-algorithms/src/test/resources/org/opensearch/ml/engine/algorithms/text_embedding/all-MiniLM-L6-v2_torchscript_sentence-transformer.zip?raw=true"
|
|
}
|
|
```
|
|
|
|
### Response
|
|
|
|
OpenSearch responds with the `task_id` and task `status`.
|
|
|
|
```json
|
|
{
|
|
"task_id" : "ew8I44MBhyWuIwnfvDIH",
|
|
"status" : "CREATED"
|
|
}
|
|
```
|
|
|
|
To see the status of your model upload, enter the `task_id` into the [task API]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api#get-task-information). Use the `model_id` from the task response once the upload is complete. For example:
|
|
|
|
```json
|
|
{
|
|
"model_id" : "WWQI44MBbzI2oUKAvNUt",
|
|
"task_type" : "UPLOAD_MODEL",
|
|
"function_name" : "TEXT_EMBEDDING",
|
|
"state" : "COMPLETED",
|
|
"worker_node" : "KzONM8c8T4Od-NoUANQNGg",
|
|
"create_time" : 1665961344003,
|
|
"last_update_time" : 1665961373047,
|
|
"is_async" : true
|
|
}
|
|
```
|
|
|
|
## Load model
|
|
|
|
The load model operation reads the model's chunks from the model index, then creates an instance of the model to cache into memory. This operation requires the `model_id`.
|
|
|
|
```json
|
|
POST /_plugins/_ml/models/<model_id>/_load
|
|
```
|
|
|
|
### Example: Load into all available ML nodes
|
|
|
|
In this example request, OpenSearch loads the model into any available OpenSearch ML node:
|
|
|
|
```json
|
|
POST /_plugins/_ml/models/WWQI44MBbzI2oUKAvNUt/_load
|
|
```
|
|
|
|
### Example: Load into a specific node
|
|
|
|
If you want to reserve the memory of other ML nodes within your cluster, you can load your model into a specific node(s) by specifying the `node_ids` in the request body:
|
|
|
|
```json
|
|
POST /_plugins/_ml/models/WWQI44MBbzI2oUKAvNUt/_load
|
|
{
|
|
"node_ids": ["4PLK7KJWReyX0oWKnBA8nA"]
|
|
}
|
|
```
|
|
|
|
### Response
|
|
|
|
```json
|
|
{
|
|
"task_id" : "hA8P44MBhyWuIwnfvTKP",
|
|
"status" : "CREATED"
|
|
}
|
|
```
|
|
|
|
## Unload a model
|
|
|
|
To unload a model from memory, use the unload operation.
|
|
|
|
```json
|
|
POST /_plugins/_ml/models/<model_id>/_unload
|
|
```
|
|
|
|
### Example: Unload model from all ML nodes
|
|
|
|
```json
|
|
POST /_plugins/_ml/models/MGqJhYMBbbh0ushjm8p_/_unload
|
|
```
|
|
|
|
### Response: Unload model from all ML nodes
|
|
|
|
```json
|
|
{
|
|
"s5JwjZRqTY6nOT0EvFwVdA": {
|
|
"stats": {
|
|
"MGqJhYMBbbh0ushjm8p_": "unloaded"
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
### Example: Unload specific models from specific nodes
|
|
|
|
```json
|
|
POST /_plugins/_ml/models/_unload
|
|
{
|
|
"node_ids": ["sv7-3CbwQW-4PiIsDOfLxQ"],
|
|
"model_ids": ["KDo2ZYQB-v9VEDwdjkZ4"]
|
|
}
|
|
```
|
|
|
|
|
|
### Response: Unload specific models from specific nodes
|
|
|
|
```json
|
|
{
|
|
"sv7-3CbwQW-4PiIsDOfLxQ" : {
|
|
"stats" : {
|
|
"KDo2ZYQB-v9VEDwdjkZ4" : "unloaded"
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
### Response: Unload all models from specific nodes
|
|
|
|
```json
|
|
{
|
|
"sv7-3CbwQW-4PiIsDOfLxQ" : {
|
|
"stats" : {
|
|
"KDo2ZYQB-v9VEDwdjkZ4" : "unloaded",
|
|
"-8o8ZYQBvrLMaN0vtwzN" : "unloaded"
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
### Example: Unload specific models from all nodes
|
|
|
|
```json
|
|
{
|
|
"model_ids": ["KDo2ZYQB-v9VEDwdjkZ4"]
|
|
}
|
|
```
|
|
|
|
### Response: Unload specific models from all nodes
|
|
|
|
```json
|
|
{
|
|
"sv7-3CbwQW-4PiIsDOfLxQ" : {
|
|
"stats" : {
|
|
"KDo2ZYQB-v9VEDwdjkZ4" : "unloaded"
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
## Search model
|
|
|
|
Use this command to search models you've already created.
|
|
|
|
|
|
```json
|
|
POST /_plugins/_ml/models/_search
|
|
{query}
|
|
```
|
|
|
|
### Example: Query all models
|
|
|
|
```json
|
|
POST /_plugins/_ml/models/_search
|
|
{
|
|
"query": {
|
|
"match_all": {}
|
|
},
|
|
"size": 1000
|
|
}
|
|
```
|
|
|
|
### Example: Query models with algorithm "FIT_RCF"
|
|
|
|
```json
|
|
POST /_plugins/_ml/models/_search
|
|
{
|
|
"query": {
|
|
"term": {
|
|
"algorithm": {
|
|
"value": "FIT_RCF"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
### Response
|
|
|
|
```json
|
|
{
|
|
"took" : 8,
|
|
"timed_out" : false,
|
|
"_shards" : {
|
|
"total" : 1,
|
|
"successful" : 1,
|
|
"skipped" : 0,
|
|
"failed" : 0
|
|
},
|
|
"hits" : {
|
|
"total" : {
|
|
"value" : 2,
|
|
"relation" : "eq"
|
|
},
|
|
"max_score" : 2.4159138,
|
|
"hits" : [
|
|
{
|
|
"_index" : ".plugins-ml-model",
|
|
"_id" : "-QkKJX8BvytMh9aUeuLD",
|
|
"_version" : 1,
|
|
"_seq_no" : 12,
|
|
"_primary_term" : 15,
|
|
"_score" : 2.4159138,
|
|
"_source" : {
|
|
"name" : "FIT_RCF",
|
|
"version" : 1,
|
|
"content" : "xxx",
|
|
"algorithm" : "FIT_RCF"
|
|
}
|
|
},
|
|
{
|
|
"_index" : ".plugins-ml-model",
|
|
"_id" : "OxkvHn8BNJ65KnIpck8x",
|
|
"_version" : 1,
|
|
"_seq_no" : 2,
|
|
"_primary_term" : 8,
|
|
"_score" : 2.4159138,
|
|
"_source" : {
|
|
"name" : "FIT_RCF",
|
|
"version" : 1,
|
|
"content" : "xxx",
|
|
"algorithm" : "FIT_RCF"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
}
|
|
```
|
|
|
|
## Delete model
|
|
|
|
Deletes a model based on the model_id
|
|
|
|
```json
|
|
DELETE /_plugins/_ml/models/<model_id>
|
|
```
|
|
|
|
The API returns the following:
|
|
|
|
```json
|
|
{
|
|
"_index" : ".plugins-ml-model",
|
|
"_id" : "MzcIJX8BA7mbufL6DOwl",
|
|
"_version" : 2,
|
|
"result" : "deleted",
|
|
"_shards" : {
|
|
"total" : 2,
|
|
"successful" : 2,
|
|
"failed" : 0
|
|
},
|
|
"_seq_no" : 27,
|
|
"_primary_term" : 18
|
|
}
|
|
```
|
|
|
|
## Profile
|
|
|
|
Returns runtime information on ML tasks and models. This operation can help debug issues with models at runtime.
|
|
|
|
|
|
```json
|
|
GET /_plugins/_ml/profile
|
|
GET /_plugins/_ml/profile/models
|
|
GET /_plugins/_ml/profile/tasks
|
|
```
|
|
|
|
### Path parameters
|
|
|
|
Parameter | Data type | Description
|
|
:--- | :--- | :---
|
|
model_id | string | Returns runtime data for a specific model. You can string together multiple `model_id`s to return multiple model profiles.
|
|
tasks | string | Returns runtime data for a specific task. You can string together multiple `task_id`s to return multiple task profiles.
|
|
|
|
### Request fields
|
|
|
|
All profile body request fields are optional.
|
|
|
|
Field | Data type | Description
|
|
:--- | :--- | :---
|
|
node_ids | string | Returns all tasks and profiles from a specific node.
|
|
model_ids | string | Returns runtime data for a specific model. You can string together multiple `model_id`s to return multiple model profiles.
|
|
task_ids | string | Returns runtime data for a specific task. You can string together multiple `task_id`s to return multiple task profiles.
|
|
return_all_tasks | boolean | Determines whether or not a request returns all tasks. When set to `false` task profiles are left out of the response.
|
|
return_all_models | boolean | Determines whether or not a profile request returns all models. When set to `false` model profiles are left out of the response.
|
|
|
|
### Example: Return all tasks and models on a specific node
|
|
|
|
```json
|
|
GET /_plugins/_ml/profile
|
|
{
|
|
"node_ids": ["KzONM8c8T4Od-NoUANQNGg"],
|
|
"return_all_tasks": true,
|
|
"return_all_models": true
|
|
}
|
|
```
|
|
|
|
### Response: Return all tasks and models on a specific node
|
|
|
|
```json
|
|
{
|
|
"nodes" : {
|
|
"qTduw0FJTrmGrqMrxH0dcA" : { # node id
|
|
"models" : {
|
|
"WWQI44MBbzI2oUKAvNUt" : { # model id
|
|
"worker_nodes" : [ # routing table
|
|
"KzONM8c8T4Od-NoUANQNGg"
|
|
]
|
|
}
|
|
}
|
|
},
|
|
...
|
|
"KzONM8c8T4Od-NoUANQNGg" : { # node id
|
|
"models" : {
|
|
"WWQI44MBbzI2oUKAvNUt" : { # model id
|
|
"model_state" : "LOADED", # model status
|
|
"predictor" : "org.opensearch.ml.engine.algorithms.text_embedding.TextEmbeddingModel@592814c9",
|
|
"worker_nodes" : [ # routing table
|
|
"KzONM8c8T4Od-NoUANQNGg"
|
|
],
|
|
"predict_request_stats" : { # predict request stats on this node
|
|
"count" : 2, # total predict requests on this node
|
|
"max" : 89.978681, # max latency in milliseconds
|
|
"min" : 5.402,
|
|
"average" : 47.6903405,
|
|
"p50" : 47.6903405,
|
|
"p90" : 81.5210129,
|
|
"p99" : 89.13291418999998
|
|
}
|
|
}
|
|
}
|
|
},
|
|
...
|
|
}
|
|
```
|
|
|
|
|
|
## Predict
|
|
|
|
ML Commons can predict new data with your trained model either from indexed data or a data frame. To use the Predict API, the `model_id` is required.
|
|
|
|
```json
|
|
POST /_plugins/_ml/_predict/<algorithm_name>/<model_id>
|
|
```
|
|
|
|
### Request
|
|
|
|
```json
|
|
POST /_plugins/_ml/_predict/kmeans/<model-id>
|
|
{
|
|
"input_query": {
|
|
"_source": ["petal_length_in_cm", "petal_width_in_cm"],
|
|
"size": 10000
|
|
},
|
|
"input_index": [
|
|
"iris_data"
|
|
]
|
|
}
|
|
```
|
|
|
|
### Response
|
|
|
|
```json
|
|
{
|
|
"status" : "COMPLETED",
|
|
"prediction_result" : {
|
|
"column_metas" : [
|
|
{
|
|
"name" : "ClusterID",
|
|
"column_type" : "INTEGER"
|
|
}
|
|
],
|
|
"rows" : [
|
|
{
|
|
"values" : [
|
|
{
|
|
"column_type" : "INTEGER",
|
|
"value" : 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"values" : [
|
|
{
|
|
"column_type" : "INTEGER",
|
|
"value" : 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"values" : [
|
|
{
|
|
"column_type" : "INTEGER",
|
|
"value" : 0
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"values" : [
|
|
{
|
|
"column_type" : "INTEGER",
|
|
"value" : 0
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"values" : [
|
|
{
|
|
"column_type" : "INTEGER",
|
|
"value" : 0
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"values" : [
|
|
{
|
|
"column_type" : "INTEGER",
|
|
"value" : 0
|
|
}
|
|
]
|
|
}
|
|
]
|
|
}
|
|
```
|
|
|
|
|
|
## Train and predict
|
|
|
|
Use to train and then immediately predict against the same training data set. Can only be used with unsupervised learning models and the following algorithms:
|
|
|
|
- BATCH_RCF
|
|
- FIT_RCF
|
|
- kmeans
|
|
|
|
### Example: Train and predict with indexed data
|
|
|
|
|
|
```json
|
|
POST /_plugins/_ml/_train_predict/kmeans
|
|
{
|
|
"parameters": {
|
|
"centroids": 2,
|
|
"iterations": 10,
|
|
"distance_type": "COSINE"
|
|
},
|
|
"input_query": {
|
|
"query": {
|
|
"bool": {
|
|
"filter": [
|
|
{
|
|
"range": {
|
|
"k1": {
|
|
"gte": 0
|
|
}
|
|
}
|
|
}
|
|
]
|
|
}
|
|
},
|
|
"size": 10
|
|
},
|
|
"input_index": [
|
|
"test_data"
|
|
]
|
|
}
|
|
```
|
|
|
|
### Example: Train and predict with data directly
|
|
|
|
```json
|
|
POST /_plugins/_ml/_train_predict/kmeans
|
|
{
|
|
"parameters": {
|
|
"centroids": 2,
|
|
"iterations": 1,
|
|
"distance_type": "EUCLIDEAN"
|
|
},
|
|
"input_data": {
|
|
"column_metas": [
|
|
{
|
|
"name": "k1",
|
|
"column_type": "DOUBLE"
|
|
},
|
|
{
|
|
"name": "k2",
|
|
"column_type": "DOUBLE"
|
|
}
|
|
],
|
|
"rows": [
|
|
{
|
|
"values": [
|
|
{
|
|
"column_type": "DOUBLE",
|
|
"value": 1.00
|
|
},
|
|
{
|
|
"column_type": "DOUBLE",
|
|
"value": 2.00
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"values": [
|
|
{
|
|
"column_type": "DOUBLE",
|
|
"value": 1.00
|
|
},
|
|
{
|
|
"column_type": "DOUBLE",
|
|
"value": 4.00
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"values": [
|
|
{
|
|
"column_type": "DOUBLE",
|
|
"value": 1.00
|
|
},
|
|
{
|
|
"column_type": "DOUBLE",
|
|
"value": 0.00
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"values": [
|
|
{
|
|
"column_type": "DOUBLE",
|
|
"value": 10.00
|
|
},
|
|
{
|
|
"column_type": "DOUBLE",
|
|
"value": 2.00
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"values": [
|
|
{
|
|
"column_type": "DOUBLE",
|
|
"value": 10.00
|
|
},
|
|
{
|
|
"column_type": "DOUBLE",
|
|
"value": 4.00
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"values": [
|
|
{
|
|
"column_type": "DOUBLE",
|
|
"value": 10.00
|
|
},
|
|
{
|
|
"column_type": "DOUBLE",
|
|
"value": 0.00
|
|
}
|
|
]
|
|
}
|
|
]
|
|
}
|
|
}
|
|
```
|
|
|
|
### Response
|
|
|
|
```json
|
|
{
|
|
"status" : "COMPLETED",
|
|
"prediction_result" : {
|
|
"column_metas" : [
|
|
{
|
|
"name" : "ClusterID",
|
|
"column_type" : "INTEGER"
|
|
}
|
|
],
|
|
"rows" : [
|
|
{
|
|
"values" : [
|
|
{
|
|
"column_type" : "INTEGER",
|
|
"value" : 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"values" : [
|
|
{
|
|
"column_type" : "INTEGER",
|
|
"value" : 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"values" : [
|
|
{
|
|
"column_type" : "INTEGER",
|
|
"value" : 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"values" : [
|
|
{
|
|
"column_type" : "INTEGER",
|
|
"value" : 0
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"values" : [
|
|
{
|
|
"column_type" : "INTEGER",
|
|
"value" : 0
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"values" : [
|
|
{
|
|
"column_type" : "INTEGER",
|
|
"value" : 0
|
|
}
|
|
]
|
|
}
|
|
]
|
|
}
|
|
}
|
|
```
|
|
|
|
## Get task information
|
|
|
|
You can retrieve information about a task using the task_id.
|
|
|
|
```json
|
|
GET /_plugins/_ml/tasks/<task_id>
|
|
```
|
|
|
|
The response includes information about the task.
|
|
|
|
```json
|
|
{
|
|
"model_id" : "l7lamX8BO5w8y8Ra2oty",
|
|
"task_type" : "TRAINING",
|
|
"function_name" : "KMEANS",
|
|
"state" : "COMPLETED",
|
|
"input_type" : "SEARCH_QUERY",
|
|
"worker_node" : "54xOe0w8Qjyze00UuLDfdA",
|
|
"create_time" : 1647545342556,
|
|
"last_update_time" : 1647545342587,
|
|
"is_async" : true
|
|
}
|
|
```
|
|
|
|
## Search task
|
|
|
|
Search tasks based on parameters indicated in the request body.
|
|
|
|
```json
|
|
GET /_plugins/_ml/tasks/_search
|
|
{query body}
|
|
```
|
|
|
|
|
|
### Example: Search task which "function_name" is "KMEANS"
|
|
|
|
```json
|
|
GET /_plugins/_ml/tasks/_search
|
|
{
|
|
"query": {
|
|
"bool": {
|
|
"filter": [
|
|
{
|
|
"term": {
|
|
"function_name": "KMEANS"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
### Response
|
|
|
|
```json
|
|
{
|
|
"took" : 12,
|
|
"timed_out" : false,
|
|
"_shards" : {
|
|
"total" : 1,
|
|
"successful" : 1,
|
|
"skipped" : 0,
|
|
"failed" : 0
|
|
},
|
|
"hits" : {
|
|
"total" : {
|
|
"value" : 2,
|
|
"relation" : "eq"
|
|
},
|
|
"max_score" : 0.0,
|
|
"hits" : [
|
|
{
|
|
"_index" : ".plugins-ml-task",
|
|
"_id" : "_wnLJ38BvytMh9aUi-Ia",
|
|
"_version" : 4,
|
|
"_seq_no" : 29,
|
|
"_primary_term" : 4,
|
|
"_score" : 0.0,
|
|
"_source" : {
|
|
"last_update_time" : 1645640125267,
|
|
"create_time" : 1645640125209,
|
|
"is_async" : true,
|
|
"function_name" : "KMEANS",
|
|
"input_type" : "SEARCH_QUERY",
|
|
"worker_node" : "jjqFrlW7QWmni1tRnb_7Dg",
|
|
"state" : "COMPLETED",
|
|
"model_id" : "AAnLJ38BvytMh9aUi-M2",
|
|
"task_type" : "TRAINING"
|
|
}
|
|
},
|
|
{
|
|
"_index" : ".plugins-ml-task",
|
|
"_id" : "wwRRLX8BydmmU1x6I-AI",
|
|
"_version" : 3,
|
|
"_seq_no" : 38,
|
|
"_primary_term" : 7,
|
|
"_score" : 0.0,
|
|
"_source" : {
|
|
"last_update_time" : 1645732766656,
|
|
"create_time" : 1645732766472,
|
|
"is_async" : true,
|
|
"function_name" : "KMEANS",
|
|
"input_type" : "SEARCH_QUERY",
|
|
"worker_node" : "A_IiqoloTDK01uZvCjREaA",
|
|
"state" : "COMPLETED",
|
|
"model_id" : "xARRLX8BydmmU1x6I-CG",
|
|
"task_type" : "TRAINING"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
}
|
|
```
|
|
|
|
## Delete task
|
|
|
|
Delete a task based on the task_id.
|
|
|
|
ML Commons does not check the task status when running the `Delete` request. There is a risk that a currently running task could be deleted before the task completes. To check the status of a task, run `GET /_plugins/_ml/tasks/<task_id>` before task deletion.
|
|
{: .note}
|
|
|
|
```json
|
|
DELETE /_plugins/_ml/tasks/{task_id}
|
|
```
|
|
|
|
The API returns the following:
|
|
|
|
```json
|
|
{
|
|
"_index" : ".plugins-ml-task",
|
|
"_id" : "xQRYLX8BydmmU1x6nuD3",
|
|
"_version" : 4,
|
|
"result" : "deleted",
|
|
"_shards" : {
|
|
"total" : 2,
|
|
"successful" : 2,
|
|
"failed" : 0
|
|
},
|
|
"_seq_no" : 42,
|
|
"_primary_term" : 7
|
|
}
|
|
```
|
|
|
|
## Stats
|
|
|
|
Get statistics related to the number of tasks.
|
|
|
|
To receive all stats, use:
|
|
|
|
```json
|
|
GET /_plugins/_ml/stats
|
|
```
|
|
|
|
To receive stats for a specific node, use:
|
|
|
|
```json
|
|
GET /_plugins/_ml/<nodeId>/stats/
|
|
```
|
|
|
|
To receive stats for a specific node and return a specified stat, use:
|
|
|
|
```json
|
|
GET /_plugins/_ml/<nodeId>/stats/<stat>
|
|
```
|
|
|
|
To receive information on a specific stat from all nodes, use:
|
|
|
|
```json
|
|
GET /_plugins/_ml/stats/<stat>
|
|
```
|
|
|
|
|
|
### Example: Get all stats
|
|
|
|
```json
|
|
GET /_plugins/_ml/stats
|
|
```
|
|
|
|
### Response
|
|
|
|
```json
|
|
{
|
|
"zbduvgCCSOeu6cfbQhTpnQ" : {
|
|
"ml_executing_task_count" : 0
|
|
},
|
|
"54xOe0w8Qjyze00UuLDfdA" : {
|
|
"ml_executing_task_count" : 0
|
|
},
|
|
"UJiykI7bTKiCpR-rqLYHyw" : {
|
|
"ml_executing_task_count" : 0
|
|
},
|
|
"zj2_NgIbTP-StNlGZJlxdg" : {
|
|
"ml_executing_task_count" : 0
|
|
},
|
|
"jjqFrlW7QWmni1tRnb_7Dg" : {
|
|
"ml_executing_task_count" : 0
|
|
},
|
|
"3pSSjl5PSVqzv5-hBdFqyA" : {
|
|
"ml_executing_task_count" : 0
|
|
},
|
|
"A_IiqoloTDK01uZvCjREaA" : {
|
|
"ml_executing_task_count" : 0
|
|
}
|
|
}
|
|
```
|
|
|
|
## Execute
|
|
|
|
Some algorithms, such as [Localization]({{site.url}}{{site.baseurl}}/ml-commons-plugin/algorithms#localization), don't require trained models. You can run no-model-based algorithms using the `execute` API.
|
|
|
|
```json
|
|
POST _plugins/_ml/_execute/<algorithm_name>
|
|
```
|
|
|
|
### Example: Execute localization
|
|
|
|
The following example uses the Localization algorithm to find subset-level information for aggregate data (for example, aggregated over time) that demonstrates the activity of interest, such as spikes, drops, changes, or anomalies.
|
|
|
|
```json
|
|
POST /_plugins/_ml/_execute/anomaly_localization
|
|
{
|
|
"index_name": "rca-index",
|
|
"attribute_field_names": [
|
|
"attribute"
|
|
],
|
|
"aggregations": [
|
|
{
|
|
"sum": {
|
|
"sum": {
|
|
"field": "value"
|
|
}
|
|
}
|
|
}
|
|
],
|
|
"time_field_name": "timestamp",
|
|
"start_time": 1620630000000,
|
|
"end_time": 1621234800000,
|
|
"min_time_interval": 86400000,
|
|
"num_outputs": 10
|
|
}
|
|
```
|
|
|
|
Upon execution, the API returns the following:
|
|
|
|
```json
|
|
"results" : [
|
|
{
|
|
"name" : "sum",
|
|
"result" : {
|
|
"buckets" : [
|
|
{
|
|
"start_time" : 1620630000000,
|
|
"end_time" : 1620716400000,
|
|
"overall_aggregate_value" : 65.0
|
|
},
|
|
{
|
|
"start_time" : 1620716400000,
|
|
"end_time" : 1620802800000,
|
|
"overall_aggregate_value" : 75.0,
|
|
"entities" : [
|
|
{
|
|
"key" : [
|
|
"attr0"
|
|
],
|
|
"contribution_value" : 1.0,
|
|
"base_value" : 2.0,
|
|
"new_value" : 3.0
|
|
},
|
|
{
|
|
"key" : [
|
|
"attr1"
|
|
],
|
|
"contribution_value" : 1.0,
|
|
"base_value" : 3.0,
|
|
"new_value" : 4.0
|
|
},
|
|
{
|
|
"key" : [
|
|
"attr2"
|
|
],
|
|
"contribution_value" : 1.0,
|
|
"base_value" : 4.0,
|
|
"new_value" : 5.0
|
|
},
|
|
{
|
|
"key" : [
|
|
"attr3"
|
|
],
|
|
"contribution_value" : 1.0,
|
|
"base_value" : 5.0,
|
|
"new_value" : 6.0
|
|
},
|
|
{
|
|
"key" : [
|
|
"attr4"
|
|
],
|
|
"contribution_value" : 1.0,
|
|
"base_value" : 6.0,
|
|
"new_value" : 7.0
|
|
},
|
|
{
|
|
"key" : [
|
|
"attr5"
|
|
],
|
|
"contribution_value" : 1.0,
|
|
"base_value" : 7.0,
|
|
"new_value" : 8.0
|
|
},
|
|
{
|
|
"key" : [
|
|
"attr6"
|
|
],
|
|
"contribution_value" : 1.0,
|
|
"base_value" : 8.0,
|
|
"new_value" : 9.0
|
|
},
|
|
{
|
|
"key" : [
|
|
"attr7"
|
|
],
|
|
"contribution_value" : 1.0,
|
|
"base_value" : 9.0,
|
|
"new_value" : 10.0
|
|
},
|
|
{
|
|
"key" : [
|
|
"attr8"
|
|
],
|
|
"contribution_value" : 1.0,
|
|
"base_value" : 10.0,
|
|
"new_value" : 11.0
|
|
},
|
|
{
|
|
"key" : [
|
|
"attr9"
|
|
],
|
|
"contribution_value" : 1.0,
|
|
"base_value" : 11.0,
|
|
"new_value" : 12.0
|
|
}
|
|
]
|
|
},
|
|
...
|
|
]
|
|
}
|
|
}
|
|
]
|
|
}
|
|
```
|
|
|