discourse-ai/lib/summarization/strategies/base.rb

54 lines
1.8 KiB
Ruby
Raw Normal View History

# frozen_string_literal: true
module DiscourseAi
module Summarization
module Strategies
# Objects inheriting from this class will get passed as a dependency to `DiscourseAi::Summarization::FoldContent`.
# This collaborator knows how to source the content to summarize and the prompts used in the process,
# one for summarizing a chunk and another for concatenating them if necessary.
class Base
def initialize(target)
@target = target
end
attr_reader :target, :opts
# The summary type differentiates instances of `AiSummary` pointing to a single target.
# See the `summary_type` enum for available options.
def type
raise NotImplementedError
end
# @returns { Array<Hash> } - Content to summarize.
#
# This method returns an array of hashes with the content to summarize using the following structure:
#
# {
# poster: A way to tell who write the content,
# id: A number to signal order,
# text: Text to summarize
# }
#
def targets_data
raise NotImplementedError
end
# @returns { DiscourseAi::Completions::Prompt } - Prompt passed to the LLM when extending an existing summary.
def summary_extension_prompt(_summary, _texts_to_summarize, _tokenizer)
raise NotImplementedError
end
# @returns { DiscourseAi::Completions::Prompt } - Prompt passed to the LLM for summarizing a single chunk of content.
def first_summary_prompt(_input, _tokenizer)
raise NotImplementedError
end
# We'll pass this as the feature_name when doing LLM calls.
def feature
"summarize"
end
end
end
end
end