* [ML][Inference] add tags url param to GET (#51330)
Adds a new URL parameter, `tags` to the GET _ml/inference/<model_id> endpoint.
This parameter allows the list of models to be further reduced to those who contain all the provided tags.
Object fields cannot be used as features. At the moment _explain
API includes them and even worse it allows it does not error when
an object field is excluded. This creates the expectation to the
user that all children fields will also be excluded while it's not
the case.
This commit omits object fields from the _explain API and also
adds an error if an object field is included or excluded.
Backport of #51115
The version replacement for the code snippet should replace 7.6 with the current version,
but doesn't match because of a missing whitespace.
Closes#51052
Adds a new parameter to regression and classification that enables computation
of importance for the top most important features. The computation of the importance
is based on SHAP (SHapley Additive exPlanations) method.
Backport of #50914
Adds a `force` parameter to the delete data frame analytics
request. When `force` is `true`, the action force-stops the
jobs and then proceeds to the deletion. This can be used in
order to delete a non-stopped job with a single request.
Closes#48124
Backport of #50553
This adds a new `randomize_seed` for regression and classification.
When not explicitly set, the seed is randomly generated. One can
reuse the seed in a similar job in order to ensure the same docs
are picked for training.
Backport of #49990
This adds a `_source` setting under the `source` setting of a data
frame analytics config. The new `_source` is reusing the structure
of a `FetchSourceContext` like `analyzed_fields` does. Specifying
includes and excludes for source allows selecting which fields
will get reindexed and will be available in the destination index.
Closes#49531
Backport of #49690
This commit replaces the _estimate_memory_usage API with
a new API, the _explain API.
The API consolidates information that is useful before
creating a data frame analytics job.
It includes:
- memory estimation
- field selection explanation
Memory estimation is moved here from what was previously
calculated in the _estimate_memory_usage API.
Field selection is a new feature that explains to the user
whether each available field was selected to be included or
not in the analysis. In the case it was not included, it also
explains the reason why.
Backport of #49455
This change adds:
- A new option, allow_lazy_open, to anomaly detection jobs
- A new option, allow_lazy_start, to data frame analytics jobs
Both work in the same way: they allow a job to be
opened/started even if no ML node exists that can
accommodate the job immediately. In this situation
the job waits in the opening/starting state until ML
node capacity is available. (The starting state for data
frame analytics jobs is new in this change.)
Additionally, the ML nightly maintenance tasks now
creates audit warnings for ML jobs that are unassigned.
This means that jobs that cannot be assigned to an ML
node for a very long time will show a yellow warning
triangle in the UI.
A final change is that it is now possible to close a job
that is not assigned to a node without using force.
This is because previously jobs that were open but
not assigned to a node were an aberration, whereas
after this change they'll be relatively common.
Adds the following parameters to `outlier_detection`:
- `compute_feature_influence` (boolean): whether to compute or not
feature influence scores
- `outlier_fraction` (double): the proportion of the data set assumed
to be outlying prior to running outlier detection
- `standardization_enabled` (boolean): whether to apply standardization
to the feature values
Backport of #47600
* [DOCS] Adds examples to the PUT dfa and the evaluate dfa APIs.
* [DOCS] Removes extra lines from examples.
* Update docs/reference/ml/df-analytics/apis/evaluate-dfanalytics.asciidoc
Co-Authored-By: Lisa Cawley <lcawley@elastic.co>
* Update docs/reference/ml/df-analytics/apis/put-dfanalytics.asciidoc
Co-Authored-By: Lisa Cawley <lcawley@elastic.co>
* [DOCS] Explains examples.
* [DOCS] Adds regression analytics resources and examples to the data frame analytics APIs.
Co-Authored-By: Benjamin Trent <ben.w.trent@gmail.com>
Co-Authored-By: Tom Veasey <tveasey@users.noreply.github.com>
* [DOCS] Adds outlier detection params to the data frame analytics resources.
Co-Authored-By: Tom Veasey <tveasey@users.noreply.github.com>
Co-Authored-By: Lisa Cawley <lcawley@elastic.co>
Previously, the stats API reports a progress percentage
for DF analytics tasks that are running and are in the
`reindexing` or `analyzing` state.
This means that when the task is `stopped` there is no progress
reported. Thus, one cannot distinguish between a task that never
run to one that completed.
In addition, there are blind spots in the progress reporting.
In particular, we do not account for when data is loaded into the
process. We also do not account for when results are written.
This commit addresses the above issues. It changes progress
to being a list of objects, each one describing the phase
and its progress as a percentage. We currently have 4 phases:
reindexing, loading_data, analyzing, writing_results.
When the task stops, progress is persisted as a document in the
state index. The stats API now reports progress from in-memory
if the task is running, or returns the persisted document
(if there is one).
This PR addresses the feedback in https://github.com/elastic/ml-team/issues/175#issuecomment-512215731.
* Adds an example to `analyzed_fields`
* Includes `source` and `dest` objects inline in the resource page
* Lists `model_memory_limit` in the PUT API page
* Amends the `analysis` section in the resource page
* Removes Properties headings in subsections