The 'animations' field of @Component metadata should be copied directly
into the ngComponentDef for that component and should not pass through
static resolution.
Previously the animations array was statically resolved and then the
values were translated back when generating ngComponentDef.
PR Close#26322
Previously we only removed assignments to `Class.decorators = [];`
if the array was not empty.
Now we also remove calls to `__decorate([])`, similarly.
PR Close#26236
Previously, classes that were declared via variable declarations,
rather than class declarations, were being excluded from the
parsed classes.
PR Close#26236
The most recent Angular distributions have begun to use __decorate instead of Class.decorators.
This prevents `ngcc` from recognizing the classes and then fails to perform the transform to
ivy format.
Example:
```
var ApplicationModule = /** @class */ (function () {
// Inject ApplicationRef to make it eager...
function ApplicationModule(appRef) {
}
ApplicationModule = __decorate([
NgModule({ providers: APPLICATION_MODULE_PROVIDERS }),
__metadata("design:paramtypes", [ApplicationRef])
], ApplicationModule);
return ApplicationModule;
}());
```
Now `ngcc` recognizes `__decorate([...])` declarations and performs its transform.
See FW-379
PR Close#26236
In some formats variables are declared as `var` or `let` and only
assigned a value later in the code.
The ngtsc resolver still needs to be able to resolve this value,
so the host now provides a `host.getVariableValue(declaration)`
method that can do this resolution based on the format.
The hosts make some assumptions about the layout of the
code, so they may only work in the constrained scenarios that
ngcc expects.
PR Close#26236
This commit builds on the NgtscTestEnvironment helper work before and
introduces template_typecheck_spec.ts, which contains compiler tests
for template type-checking.
PR Close#26203
This commit gets ready for the introduction of ngtsc template
type-checking tests by refactoring test environment setup into a
custom helper. This helper will simplify the authoring of future
ngtsc tests.
Ngtsc tests previously returned a numeric error code (a la ngtsc's CLI
interface) if any TypeScript errors occurred. The helper has the
ability to run ngtsc and return the actual array of ts.Diagnostics, which
greatly increases the ability to write clean tests.
PR Close#26203
This commit enables generation and checking of a type checking ts.Program
whenever the fullTemplateTypeCheck flag is enabled in tsconfig.json. It
puts together all the pieces built previously and causes diagnostics to be
emitted whenever type errors are discovered in a template.
Todos:
* map errors back to template HTML
* expand set of type errors covered in generated type-check blocks
PR Close#26203
Before type checking can be turned on in ngtsc, appropriate metadata for
each component and directive must be determined. This commit adds tracking
of the extra metadata in *DefWithMeta types to the selector scope handling,
allowing for later extraction for type-checking purposes.
PR Close#26203
This commit introduces the template type-checking context API, which manages
inlining of type constructors and type-check blocks into ts.SourceFiles.
This API will be used by ngtsc to generate a type-checking ts.Program.
An TypeCheckProgramHost is provided which can wrap a normal ts.CompilerHost
and intercept getSourceFile() calls. This can be used to provide source
files with type check blocks to a ts.Program for type-checking.
PR Close#26203
This commit introduces the main functionality of the type-check compiler:
generation of type check blocks. Type check blocks are blocks of TypeScript
code which can be inlined into source files, and when processed by the
TypeChecker will give information about any typing errors in template
expressions.
PR Close#26203
Template type-checking will make use of expression and statement
translation as well as the ImportManager, so this code needs to
live in a separate build target which can be depended on by both
the main ngtsc transform as well as the template type-checking
mechanism. This refactor introduces a separate build target
for that code.
PR Close#26203
Previously in Ivy, metadata for directives/components/modules/etc was
carried in .d.ts files inside type information encoded on the
DirectiveDef, ComponentDef, NgModuleDef, etc types of Ivy definition
fields. This works well, but has the side effect of complicating Ivy's
runtime code as these extra generic type parameters had to be specified
as <any> throughout the codebase. *DefInternal types were introduced
previously to mitigate this issue, but that's the wrong way to solve
the problem.
This commit returns *Def types to their original form, with no metadata
attached. Instead, new *DefWithMeta types are introduced that alias the
plain definition types and add extra generic parameters. This way the
only code that needs to deal with the extra metadata parameters is the
compiler code that reads and writes them - the existence of this metadata
is transparent to the runtime, as it should be.
PR Close#26203
This commit introduces //packages/compiler-cli/src/ngtsc/typecheck as a
container for template type-checking code, and implements an initial API:
type constructor generation.
Type constructors are static methods on component/directive types with
no runtime implementation. The methods are used during compilation to
enable inference of a component or directive's generic type parameters
from the types of expressions bound to any of their @Inputs. A type
constructor looks like:
class Directive<T> {
someInput: T;
static ngTypeCtor<T>(init: Partial<Pick<Directive<T>, 'someInput'>>): Directive<T>;
}
It can be used to infer a type for T based on the input:
const _dir = Directive.ngTypeCtor({someInput: 'string'}); // Directive<T>
PR Close#26203
`TypeScript` only supports merging and extending of `compilerOptions`. This is an implementation to support extending and inheriting of `angularCompilerOptions` from multiple files.
Closes: #22684
PR Close#22717
Create getter methods `getXXXDef` for each definition which
uses `hasOwnProperty` to verify that we don't accidently read form the
parent class.
Fixes: #24011Fixes: #25026
PR Close#25736
Previously, if ngtsc encountered a VariableDeclaration without an
initializer, it would assume that the variable was undefined, and
return that result.
However, for symbols exported from external modules that resolve to
.d.ts files, variable declarations are of the form:
export declare let varName: Type;
This form also lacks an initializer, but indicates the presence of an
importable symbol which can be referenced. This commit changes the
static resolver to understand variable declarations with the 'declare'
keyword and to generate references when it encounters them.
PR Close#25775
The bootstrap property of @NgModule was not previously compiled by
the compiler in AOT or JIT modes (in Ivy). This commit adds support
for bootstrap.
PR Close#25775
Closure requires @nocollapse on Ivy definition static fields in order
to not convert them to standalone constants. However tsickle, the tool
which would ordinarily be responsible for adding @nocollapse, doesn't
properly annotate fields which are added synthetically via transforms.
So this commit adds @nocollapse by applying regular expressions against
code during the final write to disk.
PR Close#25775
`ngcc` adds marker files to each folder that has been
compiled, containing the version of the ngcc used.
When compiling, it will ignore folders that contain these
marker files, as long as the version matches.
PR Close#25557
Closure compiler requires that the i18n message constants of the form
const MSG_XYZ = goog.getMessage('...');
have names that are unique across an entire compilation, even if the
variables themselves are local to a given module. This means that in
practice these names must be unique in a codebase.
The best way to guarantee this requirement is met is to encode the
relative file name of the file into which the constant is being written
into the constant name itself. This commit implements that solution.
PR Close#25689
TypeScript has a more modern diagnostic emit function which produces
contextually annotated error information, using colors in the console
to indicate where in the code the error occurs.
This commit swiches ngtsc to use this format for diagnostics when
emitting them after a failed compilation.
PR Close#25647
This commit takes the first steps towards ngtsc producing real
TypeScript diagnostics instead of simply throwing errors when
encountering incorrect code.
A new class is introduced, FatalDiagnosticError, which can be thrown by
handlers whenever a condition in the code is encountered which by
necessity prevents the class from being compiled. This error type is
convertable to a ts.Diagnostic which represents the type and source of
the error.
Error codes are introduced for Angular errors, and are prefixed with -99
(so error code 1001 becomes -991001) to distinguish them from other TS
errors.
A function is provided which will read TS diagnostic output and convert
the TS errors to NG errors if they match this negative error code
format.
PR Close#25647
In tsc 3.0 the check that enables program structure reuse in tryReuseStructureFromOldProgram has changed
and now uses identity comparison on arrays within CompilerOptions. Since we recreate the options
on each incremental compilation, we now fail this check.
After this change the default set of options is reused in between incremental compilations, but we still
allow options to be overriden if needed.
PR Close#25275
This fixes a bug in ngtsc where each @Directive was compiled using a
separate ConstantPool. This resulted in two issues:
* Directive constants were not shared across the file
* Extra statements from directive compilation were dropped instead of
added to the file
This commit fixes both issues and adds a test to verify @Directive is
working properly.
PR Close#25620
This commit adds support for enumeration values. An enumeration value
is now a first-class return value of the resolver, which provides both
a Reference to the enum type itself and the name of the value from that
enum. Resolving an enum itself returns a Map<string, EnumValue>.
PR Close#25619
Ivy definitions in .d.ts files often reference the type of a class.
Sometimes, those classes have generic type parameters. When this is
the case, ngtsc needs to emit generic type parameters in the .d.ts
files (usually by passing 'any').
PR Close#25406
Since non-flat module formats (esm2015, esm5) have different structure
than their flat counterparts (and since we are operating on JS files
inside `node_modules/`, we need to configure TS to include deeply nested
JS files (by specifying a sufficiently high `maxNodeModuleJsDepth`).
Remains to be determined if this has any (noticeable) performance
implications.
PR Close#25406
In some code formats (e.g. ES5) methods can actually be function
expressions. For example:
```js
function MyClass() {}
// this static method is declared as a function expression
MyClass.staticMethod = function() { ... };
```
PR Close#25406
ngtsc's static resolver can evaluate function calls where parameters
have default values. In TypeScript code these default values live on the
function definition, but in ES5 code the default values are represented
by statements in the function body.
A new ReflectionHost method getDefinitionOfFunction() abstracts over
this difference, and allows the static reflector to more accurately
evaluate ES5 code.
PR Close#25406
A small bug caused base factory variable statements for @Component to
not be emitted properly. At the same time as this is fixed, those
statements are now emitted as const.
PR Close#25425
When @angular/core is compiled by ngtsc, a factory file is generated
for ApplicationModule, that is currently invalid because r3_symbols
does not export NgModuleFactory. This change fixes that issue and
ensures the generated ngfactory file for @angular/core is valid.
PR Close#25392
When generating the 'directives:' property of ngComponentDef, ngtsc
needs to be conscious of declaration order. If a directive being
written into the array is declarated after the component currently
being compiled, then the entire directives array needs to be wrapped
in a closure.
This commit fixes ngtsc to pay attention to such ordering issues
within directives arrays.
PR Close#25392
This commit creates an API for factory functions which allows them
to be inherited from one another. To do so, it differentiates between
the factory function as a wrapper for a constructor and the factory
function in ngInjectableDefs which is determined by a default
provider.
The new form is:
factory: (t?) => new (t || SomeType)(inject(Dep1), inject(Dep2))
The 't' parameter allows for constructor inheritance. A subclass with
no declared constructor inherits its constructor from the superclass.
With the 't' parameter, a subclass can call the superclass' factory
function and use it to create an instance of the subclass.
For @Injectables with configured providers, the factory function is
of the form:
factory: (t?) => t ? constructorInject(t) : provider();
where constructorInject(t) creates an instance of 't' using the
naturally declared constructor of the type, and where provider()
creates an instance of the base type using the special declared
provider on @Injectable.
PR Close#25392
Previously, ngtsc used a new ConstantPool for each decorator
compilation. This could result in collisions between constants in the
top-level scope.
Now, ngtsc uses a single ConstantPool for each source file being
compiled, and merges the constant statements into the file after the
import section.
PR Close#25392
The performCompilation() is always called with an undefined oldProgram option (even in watch mode).
This was regression introduced in: 957be960d2
Partial fix, discovered in: #21361
PR Close#21364
Inside of a nested template, an attempt to generate code for a banana-
in-a-box expression would cause a crash in the _AstToIrVisitor, as it
was not handling the case where a write would be generated to a local
variable.
This change supports such a mode of operation.
PR Close#25321
before:
```
Expected to find features 'import * as i0 from "@angular/core";
import { Directive, Input } from '@angular/core';
```
after:
```
Failed to find "template" after "...Component_Factory() { return new
MyComponent(); }," in:
'import * as i0 from "@angular/core";
import { Directive, Input } from '@angular/core';```
```
PR Close#25291
To match the View Engine behavior.
We should make this configurable so that the node injector is tree shaken when
directives do not need to be published.
PR Close#25291
Previously the compiler compliance tests ran and built test code with
real dependencies on @angular/core and @angular/common. This meant that
any changes to the compiler would result in long rebuild processes
for tests to rerun.
This change removes those dependencies and causes test code to be built
against the fake_core stub of @angular/core that the ngtsc tests use.
This change also removes the dependency on @angular/common entirely, as
locality means it's possible to reference *ngIf without needing to link
to an implementation.
PR Close#25248
Existing bootstrap code in the wild depends on the existence of
.ngfactory files, which Ivy does not need. This commit adds the
capability in ngtsc to generate .ngfactory files which bridge
existing bootstrap code with Ivy.
This is an initial step. Remaining work includes complying with
the compiler option to specify a generated file directory, as well
as presumably testing in g3.
PR Close#25176
Before this change bound properties would not be used when matching directives
at runtime.
That is `<ng-template [ngIf]=cond>...</ng-template>` would not trigger the
`ngIf` directive.
PR Close#25272
The optional property on `ts.CompilerHost` is called `realpath` (lower
case), not `realPath` (lower camel case).
It is not clear to me what the impact of this is, but the author's
intent was clearly to override `realpath`.
PR Close#25023
Update XMB placeholders(<ph>) to include the original value on top of an
example. Placeholders can by definition have one example(<ex>) tag and a
text node. The text node is used by TC as the "original" value from the
placeholder, while the example should represent a dummy value.
For example: <ph name="PET"><ex>Gopher</ex>{{ petName }}</ph>.
This change makes sure that we have the original text, but it *DOES NOT*
make sure that the example is correct. The example has the same wrong
behavior of showing the interpolation text rather than a useful
example.
No breaking changes, but tools that depend on the previous behavior and
don't consider the full XMB definition may fail to parse the XMB.
Fixes b/72565847
PR Close#25079
In some code formats (e.g. ES5) methods can actually be function
expressions. For example:
```js
function MyClass() {}
// this static method is declared as a function expression
MyClass.staticMethod = function() { ... };
```
PR Close#24897
The `ReflectionHost` interface that is being implemented only expects a
return value of `boolean`.
Moreover, if you want to extend this class to support non-TS code formats,
e.g. ES5, the result of this call returning true does not mean that the `node`
is a `ClassDeclaration`. It could be a `VariableDeclaration`.
PR Close#24897
This commit replaces the "not implemented" error when calling
listLazyRoutes() with an empty result, which will allow testing
in the CLI before listLazyRoutes() is implemented.
PR Close#25080
loadNgStructureAsync() for ngtsc has a bug where it returns a
Promise<Promise[]> instead of awaiting the entire array of Promises.
This commit uses Promise.all() to await the whole set.
PR Close#25080
ngtsc used to have a custom ts.CompilerHost which delegated to the plain
ts.CompilerHost. There's no need for this wrapper class and it causes
issues with CLI integration, so delete it.
PR Close#25080
ngtsc used to assume that all .d.ts dependencies (that is, third party
packages) were imported via an absolute module path. It turns out this
assumption isn't valid; some build tools allow relative imports of
other compilation units.
In the absolute case, ngtsc assumes (and still does) that all referenced
types are available through the entrypoint from which an @NgModule was
imported. This commit adds support for relative imports, in which case
ngtsc will use relative path resolution to determine the imports.
PR Close#25080
There is a bug in the existing handling for cross-file references.
Suppose there are two files, module.ts and component.ts.
component.ts declares two components, one of which uses the other.
In the Ivy model, this means the component will get a directives:
reference to the other in its defineComponent call.
That reference is generated by looking at the declared components
of the module (in module.ts). However, the way ngtsc tracks this
reference, it ends up comparing the identifier of the component
in module.ts with the component.ts file, detecting they're not in
the same file, and generating a relative import.
This commit changes ngtsc to track all identifiers of a reference,
including the one by which it is declared. This allows toExpression()
to correctly decide that a local reference is okay in component.ts.
PR Close#25080
When ngtsc encounters a reference to a type (for example, a Component
type listed in an NgModule declarations array), it traces the import
of that type and attempts to determine the best way to refer to it.
In the event the type is defined in the same file where a reference
is being generated, the identifier of the type is used. If the type
was imported, ngtsc has a choice. It can use the identifier from the
original import, or it can write a new import to the module where the
type came from.
ngtsc has a bug currently when it elects to rely on the user's import.
When writing a .d.ts file, the user's import may have been elided as
the type was not referred to from the type side of the program. Thus,
in .d.ts files ngtsc must always assume the import may not exist, and
generate a new one.
In .js output the import is guaranteed to still exist, so it's
preferable for ngtsc to continue using the existing import if one is
available.
This commit changes how @angular/compiler writes type definitions, and
allows it to use a different expression to write a type definition than
is used to write the value. This allows ngtsc to specify that types in
type definitions should always be imported. A corresponding change to
the staticallyResolve() Reference system allows the choice of which
type of import to use when generating an Expression from a Reference.
PR Close#25080
@ContentChild[ren] and @ViewChild[ren] can contain a forwardRef() to a
type. This commit allows ngtsc to unwrap the forward reference and
deal with the node inside.
It includes two modes of support for forward reference resolution -
a foreign function resolver which understands deeply nested forward
references in expressions that are being statically evaluated, and
an unwrapForwardRef() function which deals only with top-level nodes.
Both will be useful in the future, but for now only unwrapForwardRef()
is used.
PR Close#25080
Ivy definition types have a generic type which specifies the return
type of the factory function. For example:
static ngDirectiveDef<NgForOf, '[ngFor][ngForOf]'>
However, in this case NgForOf itself has a type parameter <T>. Thus,
writing the above is incorrect.
This commit modifies ngtsc to understand the genericness of NgForOf and
to write the following:
static ngDirectiveDef<NgForOf<any>, '[ngFor][ngForOf]'>
PR Close#24862
Previously ngtsc would use a tuple of class types for listing metadata
in .d.ts files. For example, an @NgModule's declarations might be
represented with the type:
[NgIf, NgForOf, NgClass]
If the module had no declarations, an empty tuple [] would be produced.
This has two problems.
1. If the class type has generic type parameters, TypeScript will
complain that they're not provided.
2. The empty tuple type is not actually legal.
This commit addresses both problems.
1. Class types are now represented using the `typeof` operator, so the
above declarations would be represented as:
[typeof NgIf, typeof NgForOf, typeof NgClass].
Since typeof operates on a value, it doesn't require generic type
arguments.
2. Instead of an empty tuple, `never` is used to indicate no metadata.
PR Close#24862
Previously, some of the *Def symbols were not exported or were exported
as public API. This commit ensures every definition type is in the
private export namespace.
PR Close#24862
This commit moves the compiler compliance tests into compiler-cli,
and uses ngtsc to run them instead of the custom compilation
pipeline used before. Testing against ngtsc allows for validation
of the real compiler output.
This commit also fixes a few small issues that prevented the tests
from passing.
PR Close#24862
Previously, when translating an assignment expression (e.g. x = 3), the
translator would always print the statement as X = Y. However, if the
expression is included in a larger expression (X = (Y = Z)), the
translator would print "X = Y = Z" without regard for the outer
expression context.
Now, the translator understands when it's printing an expression
statement (X = Y;) vs an expression in a larger context (X = (Y = Z);)
and encapsulates the latter in parentheses.
PR Close#24862
Previously, references had the concept of an identifier, but would not
properly detect whether the identifier should be used or not when
generating an expression. This change fixes that logic.
Additionally, now whenever an identifier resolves to a reference (even
one imported from another module) as part of resolving an expression,
the reference is updated to use that identifier. This ensures that for
a class Foo declared in foo.ts, but referenced in an expression in
bar.ts, the Reference returned includes the identifier from bar.ts,
meaning that writing an expression in bar.ts for the Reference will not
generate an import.
PR Close#24862
Previously ngtsc had a bug where it would only detect the presence of
ngOnChanges as a static method. This commit flips the condition and only
recognizes ngOnChanges as a non-static method.
PR Close#24862
Previously, the static resolver did its own interpretation of statements
in the TypeScript AST, which only functioned on TypeScript code. ES5
code in particular would not work with the resolver as it had hard-coded
assumptions about AST structure.
This commit changes the resolver to use a ReflectionHost instead, which
abstracts away understanding of the structural side of the AST. It adds 3
new methods to the ReflectionHost in support of this functionality:
* getDeclarationOfIdentifier
* getExportsOfModule
* isClass
PR Close#24862
This change adds support for host bindings to ngtsc, and parses them
both from decorators and from the metadata in the top-level annotation.
PR Close#24862
@NgModule()s get compiled to two fields: ngModuleDef and ngInjectorDef.
Both fields contain imports, as both selector scopes and injectors have
the concept of composed units of configuration. Previously these fields
were generated by static resolution of imports and exports in metadata.
Support for ModuleWithProviders requires they be generated differently.
ngModuleDef's imports/exports are generated as resolved lists of types,
whereas ngInjectorDef's imports should reflect the raw expressions that
the developer wrote in the metadata.
This change modifies the NgModule handler and properly copies raw nodes
for the imports and exports into the ngInjectorDef.
PR Close#24862
Previously ngtsc had a few bugs handling special token types:
* Injector was not properly translated to INJECTOR
* ChangeDetectorRef was not injected via injectChangeDetectorRef()
This commit fixes these two bugs, and also adds a test to ensure
they continue to work correctly.
PR Close#24862
Within an @NgModule it's common to include in the imports a call to
a ModuleWithProviders function, for example RouterModule.forRoot().
The old ngc compiler was able to handle this pattern because it had
global knowledge of metadata of not only the input compilation unit
but also all dependencies.
The ngtsc compiler for Ivy doesn't have this knowledge, so the
pattern of ModuleWithProviders functions is more difficult. ngtsc
must be able to determine which module is imported via the function
in order to expand the selector scope and properly tree-shake
directives and pipes.
This commit implements a solution to this problem, by adding a type
parameter to ModuleWithProviders through which the actual module
type can be passed between compilation units.
The provider side isn't a problem because the imports are always
copied directly to the ngInjectorDef.
PR Close#24862
Metadata in Ivy must be literal. For example,
@NgModule({...})
is legal, whereas
const meta = {...};
@NgModule(meta)
is not.
However, some code contains additional superfluous parentheses:
@NgModule(({...}))
It is desirable that ngtsc accept this form of literal object.
PR Close#24862
for non-inline templates
- Non-inline templates used to ouput the path to the component TS file
instead of the path to the original HTML file.
- Inline templates keep the same behavior.
Fixes#24884
PR Close#24885
It's possible to declare an argument-less NgModule:
@NgModule() export class Foo {}
Update the @NgModule compiler to support this usage.
PR Close#24738
On accident a few of the definition types were emitted as public API
symbols. Much of the Ivy API surface is still prefixed with ɵ,
indicating it's a private API. The definition types should be private
for now.
PR Close#24738
This commit changes the @NgModule provider to understand that sometimes
an import will resolve to an object instead of a type, and that object
could be of the ModuleWithProviders type. In that case, the 'ngModule'
property is read, and its value used instead.
This still will not handle ModuleWithProviders references across
compilation units; that work is coming in a future PR.
PR Close#24738
The current module resolution simply attaches .ts to the import/export path, which does
not work if the path is using Node / CommonJS behavior to resolve to an index.ts file.
This patch uses typescript's module resolution logic, and will attempt to load the original
typescript file if this resolution returns a .js or .d.ts file
PR Close#22856
With these changes, the types are a little stricter now and also not
compatible with Protractor's jasmine-like syntax. So, we have to also
use `@types/jasminewd2` for e2e tests (but not for non-e2e tests).
I also had to "augment" `@types/jasminewd2`, because the latest
typings from [DefinitelyTyped][1] do not reflect the fact that the
`jasminewd2` version (v2.1.0) currently used by Protractor supports
passing a `done` callback to a spec.
[1]: 566e039485/types/jasminewd2/index.d.ts (L9-L15)Fixes#23952Closes#24733
PR Close#19904
This commit adds support for templateUrl in component templates within
ngtsc. The compilation pipeline is split into sync and async versions,
where asynchronous compilation invokes a special preanalyze() phase of
analysis. The preanalyze() phase can optionally return a Promise which
will delay compilation until it resolves.
A ResourceLoader interface is used to resolve templateUrls to template
strings and can return results either synchronously or asynchronously.
During sync compilation it is an error if the ResourceLoader returns a
Promise.
Two ResourceLoader implementations are provided. One uses 'fs' to read
resources directly from disk and is chosen if the CompilerHost doesn't
provide a readResource method. The other wraps the readResource method
from CompilerHost if it's provided.
PR Close#24704
- Adds InheritanceDefinitionFeature to ivy
- Ensures that lifecycle hooks are inherited from super classes whether they are defined as directives or not
- Directives cannot inherit from Components
- Components can inherit from Directives or Components
- Ensures that Inputs, Outputs, and Host Bindings are inherited
- Ensures that super class Features are run
PR Close#24570
Currently ngtsc does not compile @Pipe. This has a side effect
of not removing the @Pipe decorator.
This adds a dummy DecoratorHandler that compiles @Pipe into an
empty ngPipeDef. Eventually this will be replaced with a full
implementation, but for now this solution allows compield code
to be tree-shaken properly.
PR Close#24677