Commit Graph

890 Commits

Author SHA1 Message Date
Alex Rickabaugh 42d1091d6a fix(compiler-cli): don't try to tag non-ts files as shims (#36987)
Some projects include .js source files (via the TypeScript allowJs option).
Previously, the compiler would attempt to tag these files for shims, which
caused errors as the regex used to create shim filenames assumes a .ts file.
This commit fixes the bug by filtering out non-ts files during tagging.

PR Close #36987
2020-05-07 14:45:05 -07:00
Paul Gschwendtner 4c92cf43cf feat(compiler-cli): report error if undecorated class with Angular features is discovered (#36921)
Previously in v9, we deprecated the pattern of undecorated base classes
that rely on Angular features. We ran a migration for this in version 9
and will run the same on in version 10 again.

To ensure that projects do not regress and start using the unsupported
pattern again, we report an error in ngtsc if such undecorated classes
are discovered.

We keep the compatibility code enabled in ngcc so that libraries
can be still be consumed, even if they have not been migrated yet.

Resolves FW-2130.

PR Close #36921
2020-05-06 15:06:10 -07:00
Igor Minar d578ab8f3c build: simplify package.jsons for all of our packages (#36944)
We can remove all of the entry point resolution configuration from the package.json
in our source code as ng_package rule adds the properties automatically and correctly
configures them.

This change simplifies our code base but doesn't have any impact on the package.json
in the distributed npm_packages.

PR Close #36944
2020-05-06 13:54:26 -07:00
Alex Rickabaugh ecffc3557f perf(compiler-cli): perform template type-checking incrementally (#36211)
This optimization builds on a lot of prior work to finally make type-
checking of templates incremental.

Incrementality requires two main components:
- the ability to reuse work from a prior compilation.
- the ability to know when changes in the current program invalidate that
  prior work.

Prior to this commit, on every type-checking pass the compiler would
generate new .ngtypecheck files for each original input file in the program.

1. (Build #1 main program): empty .ngtypecheck files generated for each
   original input file.

2. (Build #1 type-check program): .ngtypecheck contents overridden for those
   which have corresponding components that need type-checked.

3. (Build #2 main program): throw away old .ngtypecheck files and generate
   new empty ones.

4. (Build #2 type-check program): same as step 2.

With this commit, the `IncrementalDriver` now tracks template type-checking
_metadata_ for each input file. The metadata contains information about
source mappings for generated type-checking code, as well as some
diagnostics which were discovered at type-check analysis time. The actual
type-checking code is stored in the TypeScript AST for type-checking files,
which is now re-used between programs as follows:

1. (Build #1 main program): empty .ngtypecheck files generated for each
   original input file.

2. (Build #1 type-check program): .ngtypecheck contents overridden for those
   which have corresponding components that need type-checked, and the
   metadata registered in the `IncrementalDriver`.

3. (Build #2 main program): The `TypeCheckShimGenerator` now reuses _all_
   .ngtypecheck `ts.SourceFile` shims from build #1's type-check program in
   the construction of build #2's main program. Some of the contents of
   these files might be stale (if a component's template changed, for
   example), but wholesale reuse here prevents unnecessary changes in the
   contents of the program at this point and makes TypeScript's job a lot
   easier.

4. (Build #2 type-check program): For those input files which have not
   "logically changed" (meaning components within are semantically the same
   as they were before), the compiler will re-use the type-check file
   metadata from build #1, and _not_ generate a new .ngtypecheck shim.
   For components which have logically changed or where the previous
   .ngtypecheck contents cannot otherwise be reused, code generation happens
   as before.

PR Close #36211
2020-05-05 18:40:42 -07:00
Alex Rickabaugh b861e9c0ac perf(compiler-cli): split Ivy template type-checking into multiple files (#36211)
As a performance optimization, this commit splits the single
__ngtypecheck__.ts file which was previously added to the user's program as
a container for all template type-checking code into multiple .ngtypecheck
shim files, one for each original file in the user's program.

In larger applications, the generation, parsing, and checking of this single
type-checking file was a huge performance bottleneck, with the file often
exceeding 1 MB in text content. Particularly in incremental builds,
regenerating this single file for the entire application proved especially
expensive.

This commit introduces a new strategy for template type-checking code which
makes use of a new interface, the `TypeCheckingProgramStrategy`. This
interface abstracts the process of creating a new `ts.Program` to type-check
a particular compilation, and allows the mechanism there to be kept separate
from the more complex logic around dealing with multiple .ngtypecheck files.

A new `TemplateTypeChecker` hosts that logic and interacts with the
`TypeCheckingProgramStrategy` to actually generate and return diagnostics.
The `TypeCheckContext` class, previously the workhorse of template type-
checking, is now solely focused on collecting and generating type-checking
file contents.

A side effect of implementing the new `TypeCheckingProgramStrategy` in this
way is that the API is designed to be suitable for use by the Angular
Language Service as well. The LS also needs to type-check components, but
has its own method for constructing a `ts.Program` with type-checking code.

Note that this commit does not make the actual checking of templates at all
_incremental_ just yet. That will happen in a future commit.

PR Close #36211
2020-05-05 18:40:42 -07:00
Alex Rickabaugh 4213e8d5f0 fix(compiler): switch to 'referencedFiles' for shim generation (#36211)
Shim generation was built on a lie.

Shims are files added to the program which aren't original files authored by
the user, but files authored effectively by the compiler. These fall into
two categories: files which will be generated (like the .ngfactory shims we
generate for View Engine compatibility) as well as files used internally in
compilation (like the __ng_typecheck__.ts file).

Previously, shim generation was driven by the `rootFiles` passed to the
compiler as input. These are effectively the `files` listed in the
`tsconfig.json`. Each shim generator (e.g. the `FactoryGenerator`) would
examine the `rootFiles` and produce a list of shim file names which it would
be responsible for generating. These names would then be added to the
`rootFiles` when the program was created.

The fatal flaw here is that `rootFiles` does not always account for all of
the files in the program. In fact, it's quite rare that it does. Users don't
typically specify every file directly in `files`. Instead, they rely on
TypeScript, during program creation, starting with a few root files and
transitively discovering all of the files in the program.

This happens, however, during `ts.createProgram`, which is too late to add
new files to the `rootFiles` list.

As a result, shim generation was only including shims for files actually
listed in the `tsconfig.json` file, and not for the transitive set of files
in the user's program as it should.

This commit completely rewrites shim generation to use a different technique
for adding files to the program, inspired by View Engine's shim generator.
In this new technique, as the program is being created and `ts.SourceFile`s
are being requested from the `NgCompilerHost`, shims for those files are
generated and a reference to them is patched onto the original file's
`ts.SourceFile.referencedFiles`. This causes TS to think that the original
file references the shim, and causes the shim to be included in the program.
The original `referencedFiles` array is saved and restored after program
creation, hiding this little hack from the rest of the system.

The new shim generation engine differentiates between two kinds of shims:
top-level shims (such as the flat module entrypoint file and
__ng_typecheck__.ts) and per-file shims such as ngfactory or ngsummary
files. The former are included via `rootFiles` as before, the latter are
included via the `referencedFiles` of their corresponding original files.

As a result of this change, shims are now correctly generated for all files
in the program, not just the ones named in `tsconfig.json`.

A few mitigating factors prevented this bug from being realized until now:

* in g3, `files` does include the transitive closure of files in the program
* in CLI apps, shims are not really used

This change also makes use of a novel technique for associating information
with source files: the use of an `NgExtension` `Symbol` to patch the
information directly onto the AST object. This is used in several
circumstances:

* For shims, metadata about a `ts.SourceFile`'s status as a shim and its
  origins are held in the extension data.
* For original files, the original `referencedFiles` are stashed in the
  extension data for later restoration.

The main benefit of this technique is a lot less bookkeeping around `Map`s
of `ts.SourceFile`s to various kinds of data, which need to be tracked/
invalidated as part of incremental builds.

This technique is based on designs used internally in the TypeScript
compiler and is serving as a prototype of this design in ngtsc. If it works
well, it could have benefits across the rest of the compiler.

PR Close #36211
2020-05-05 18:40:42 -07:00
Alex Rickabaugh bab90a7709 fix(compiler-cli): fix bug tracking indirect NgModule dependencies (#36211)
The compiler needs to track the dependencies of a component, including any
NgModules which happen to be present in a component's scope. If an upstream
NgModule changes, any downstream components need to have their templates
re-compiled and re-typechecked.

Previously, the compiler handled this well for the A -> B -> C case where
module A imports module B which re-exports module C. However, it fell apart
in the A -> B -> C -> D case, because previously tracking focused on changes
to components/directives in the scope, and not NgModules specifically.

This commit introduces logic to track which NgModules contributed to a given
scope, and treat them as dependencies of any components within.

This logic also contains a bug, which is intentional for now. It
purposefully does not track transitive dependencies of the NgModules which
contribute to a scope. If it did, using the current dependency system, this
would treat all components and directives (even those not exported into the
scope) as dependencies, causing a major performance bottleneck. Only those
dependencies which contributed to the module's export scope should be
considered, but the current system is incapable of making this distinction.
This will be fixed at a later date.

PR Close #36211
2020-05-05 18:40:42 -07:00
Pete Bacon Darwin 70dd27ffd8 fix(compiler): normalize line endings in ICU expansions (#36741)
The html parser already normalizes line endings (converting `\r\n` to `\n`)
for most text in templates but it was missing the expressions of ICU expansions.

In ViewEngine backticked literal strings, used to define inline templates,
were already normalized by the TypeScript parser.
In Ivy we are parsing the raw text of the source file directly so the line
endings need to be manually normalized.

This change ensures that inline templates have the line endings of ICU
expression normalized correctly, which matches the ViewEngine.

In ViewEngine external templates, defined in HTML files, the behavior was
different, since TypeScript was not normalizing the line endings.
Specifically, ICU expansion "expressions" are not being normalized.
This is a problem because it means that i18n message ids can be different on
different machines that are setup with different line ending handling,
or if the developer moves a template from inline to external or vice versa.

The goal is always to normalize line endings, whether inline or external.
But this would be a breaking change since it would change i18n message ids
that have been previously computed. Therefore this commit aligns the ivy
template parsing to have the same "buggy" behavior for external templates.

There is now a compiler option `i18nNormalizeLineEndingsInICUs`, which
if set to `true` will ensure the correct non-buggy behavior. For the time
being this option defaults to `false` to ensure backward compatibility while
allowing opt-in to the desired behavior. This option's default will be
flipped in a future breaking change release.

Further, when this option is set to `false`, any ICU expression tokens,
which have not been normalized, are added to the `ParseResult` from the
`HtmlParser.parse()` method. In the future, this collection of tokens could
be used to diagnose and encourage developers to migrate their i18n message
ids. See FW-2106.

Closes #36725

PR Close #36741
2020-04-28 12:22:40 -07:00
Andrew Kushnir 88b0985bad fix(compiler): avoid generating i18n attributes in plain form (#36422)
Prior to this change, there was a problem while matching template attributes, which mistakenly took i18n attributes (that might be present in attrs array after template ones) into account. This commit updates the logic to avoid template attribute matching logic from entering the i18n section and as a result this also allows generating proper i18n attributes sections instead of keeping these attribute in plain form (with their values) in attribute arrays.

PR Close #36422
2020-04-16 09:44:10 -07:00
JoostK 4aa4e6fd03 fix(compiler): handle type references to namespaced symbols correctly (#36106)
When the compiler needs to convert a type reference to a value
expression, it may encounter a type that refers to a namespaced symbol.
Such namespaces need to be handled specially as there's various forms
available. Consider a namespace named "ns":

1. One can refer to a namespace by itself: `ns`. A namespace is only
   allowed to be used in a type position if it has been merged with a
   class, but even if this is the case it may not be possible to convert
   that type into a value expression depending on the import form. More
   on this later (case a below)
2. One can refer to a type within the namespace: `ns.Foo`. An import
   needs to be generated to `ns`, from which the `Foo` property can then
   be read.
3. One can refer to a type in a nested namespace within `ns`:
   `ns.Foo.Bar` and possibly even deeper nested. The value
   representation is similar to case 2, but includes additional property
   accesses.

The exact strategy of how to deal with these cases depends on the type
of import used. There's two flavors available:

a. A namespaced import like `import * as ns from 'ns';` that creates
   a local namespace that is irrelevant to the import that needs to be
   generated (as said import would be used instead of the original
   import).

   If the local namespace "ns" itself is referred to in a type position,
   it is invalid to convert it into a value expression. Some JavaScript
   libraries publish a value as default export using `export = MyClass;`
   syntax, however it is illegal to refer to that value using "ns".
   Consequently, such usage in a type position *must* be accompanied by
   an `@Inject` decorator to provide an explicit token.

b. An explicit namespace declaration within a module, that can be
   imported using a named import like `import {ns} from 'ns';` where the
   "ns" module declares a namespace using `declare namespace ns {}`.
   In this case, it's the namespace itself that needs to be imported,
   after which any qualified references into the namespace are converted
   into property accesses.

Before this change, support for namespaces in the type-to-value
conversion was limited and only worked  correctly for a single qualified
name using a namespace import (case 2a). All other cases were either
producing incorrect code or would crash the compiler (case 1a).

Crashing the compiler is not desirable as it does not indicate where
the issue is. Moreover, the result of a type-to-value conversion is
irrelevant when an explicit injection token is provided using `@Inject`,
so referring to a namespace in a type position (case 1) could still be
valid.

This commit introduces logic to the type-to-value conversion to be able
to properly deal with all type references to namespaced symbols.

Fixes #36006
Resolves FW-1995

PR Close #36106
2020-04-09 11:32:21 -07:00
Alex Rickabaugh 0a69a2832b style(compiler-cli): reformat of codebase with new clang-format version (#36520)
This commit reformats the packages/compiler-cli tree using the new version
of clang-format.

PR Close #36520
2020-04-08 14:51:08 -07:00
JiaLiPassion 41667de778 fix(zone.js): add issue numbers of `@types/jasmine` to the test cases (#34625)
Some cases will still need to use `spy as any` cast, because `@types/jasmine` have some issues,
1. The issue jasmine doesn't handle optional method properties, https://github.com/DefinitelyTyped/DefinitelyTyped/issues/43486
2. The issue jasmine doesn't handle overload method correctly, https://github.com/DefinitelyTyped/DefinitelyTyped/issues/42455

PR Close #34625
2020-04-08 12:10:34 -07:00
JiaLiPassion ef4736d052 build: update jasmine to 3.5 (#34625)
1. update jasmine to 3.5
2. update @types/jasmine to 3.5
3. update @types/jasminewd2 to 2.0.8

Also fix several cases, the new jasmine 3 will help to create test cases correctly,
such as in the `jasmine 2.x` version, the following case will pass

```
expect(1 == 2);
```

But in jsamine 3, the case will need to be

```
expect(1 == 2).toBeTrue();
```

PR Close #34625
2020-04-08 12:10:34 -07:00
Ayaz Hafiz e893c5a330 fix(compiler-cli): pass real source spans where they are empty (#31805)
Some consumers of functions that take `ParseSourceSpan`s currently pass
empty and incorrect source spans. This fixes those cases.

PR Close #31805
2020-04-06 09:28:27 -07:00
JoostK 75afd80ae8 refactor(compiler): add `@nocollapse` annotation using a synthetic comment (#35932)
In Ivy, Angular decorators are compiled into static fields that are
inserted into a class declaration in a TypeScript transform. When
targeting Closure compiler such fields need to be annotated with
`@nocollapse` to prevent them from being lifted from a static field into
a variable, as that would prevent the Ivy runtime from being able to
find the compiled definitions.

Previously, there was a bug in TypeScript where synthetic comments added
in a transform would not be emitted at all, so as a workaround a global
regex-replace was done in the emit's `writeFile` callback that would add
the `@nocollapse` annotation to all static Ivy definition fields. This
approach is no longer possible when ngtsc is running as TypeScript
plugin, as a plugin cannot control emit behavior.

The workaround is no longer necessary, as synthetic comments are now
properly emitted, likely as of
https://github.com/microsoft/TypeScript/pull/22141 which has been
released with TypeScript 2.8.

This change is required for running ngtsc as TypeScript plugin in
Bazel's `ts_library` rule, to move away from the custom `ngc_wrapped`
approach.

Resolves FW-1952

PR Close #35932
2020-04-01 15:37:06 -07:00
JoostK 32ce8b1326 feat(compiler): add dependency info and ng-content selectors to metadata (#35695)
This commit augments the `FactoryDef` declaration of Angular decorated
classes to contain information about the parameter decorators used in
the constructor. If no constructor is present, or none of the parameters
have any Angular decorators, then this will be represented using the
`null` type. Otherwise, a tuple type is used where the entry at index `i`
corresponds with parameter `i`. Each tuple entry can be one of two types:

1. If the associated parameter does not have any Angular decorators,
   the tuple entry will be the `null` type.
2. Otherwise, a type literal is used that may declare at least one of
   the following properties:
   - "attribute": if `@Attribute` is present. The injected attribute's
   name is used as string literal type, or the `unknown` type if the
   attribute name is not a string literal.
   - "self": if `@Self` is present, always of type `true`.
   - "skipSelf": if `@SkipSelf` is present, always of type `true`.
   - "host": if `@Host` is present, always of type `true`.
   - "optional": if `@Optional` is present, always of type `true`.

   A property is only present if the corresponding decorator is used.

   Note that the `@Inject` decorator is currently not included, as it's
   non-trivial to properly convert the token's value expression to a
   type that is valid in a declaration file.

Additionally, the `ComponentDefWithMeta` declaration that is created for
Angular components has been extended to include all selectors on
`ng-content` elements within the component's template.

This additional metadata is useful for tooling such as the Angular
Language Service, as it provides the ability to offer suggestions for
directives/components defined in libraries. At the moment, such
tooling extracts the necessary information from the _metadata.json_
manifest file as generated by ngc, however this metadata representation
is being replaced by the information emitted into the declaration files.

Resolves FW-1870

PR Close #35695
2020-03-24 14:21:42 -07:00
ayazhafiz df890d7629 fix(compiler): record correct end of expression (#34690)
This commit fixes a bug with the expression parser wherein the end index
of an expression node was recorded as the start index of the next token,
not the end index of the current token.

Closes #33477
Closes https://github.com/angular/vscode-ng-language-service/issues/433

PR Close #34690
2020-03-20 10:19:02 -07:00
Alex Rickabaugh e3ecdc6a63 feat(bazel): transform generated shims (in Ivy) with tsickle (#35975)
Currently, when Angular code is built with Bazel and with Ivy, generated
factory shims (.ngfactory files) are not processed via the majority of
tsickle's transforms. This is a subtle effect of the build infrastructure,
but it boils down to a TsickleHost method `shouldSkipTsickleProcessing`.

For ngc_wrapped builds (Bazel + Angular), this method is defined in the
`@bazel/typescript` (aka bazel rules_typescript) implementation of
`CompilerHost`. The default behavior is to skip tsickle processing for files
which are not present in the original `srcs[]` of the build rule. In
Angular's case, this includes all generated shim files.

For View Engine factories this is probably desirable as they're quite
complex and they've never been tested with tsickle. Ivy factories however
are smaller and very straightforward, and it makes sense to treat them like
any other output.

This commit adjusts two independent implementations of
`shouldSkipTsickleProcessing` to enable transformation of Ivy shims:

* in `@angular/bazel` aka ngc_wrapped, the upstream `@bazel/typescript`
  `CompilerHost` is patched to treat .ngfactory files the same as their
  original source file, with respect to tsickle processing.

  It is currently not possible to test this change as we don't have any test
  that inspects tsickle output with bazel. It will be extensively tested in
  g3.

* in `ngc`, Angular's own implementation is adjusted to allow for the
  processing of shims when compiling with Ivy. This enables a unit test to
  be written to validate the correct behavior of tsickle when given a host
  that's appropriately configured to process factory shims.

For ngtsc-as-a-plugin, a similar fix will need to be submitted upstream in
tsc_wrapped.

PR Close #35848

PR Close #35975
2020-03-17 10:17:28 -07:00
Keen Yee Liau 31bec8ce61 feat(compiler): Propagate source span and value span to Variable AST (#36047)
This commit propagates the `sourceSpan` and `valueSpan` of a `VariableBinding`
in a microsyntax expression to `ParsedVariable`, and subsequently to
View Engine Variable AST and Ivy Variable AST.

Note that this commit does not propagate the `keySpan`, because it involves
significant changes to the template AST.

PR Close #36047
2020-03-16 10:52:57 -07:00
Andrew Kushnir 79659ee5aa fix(compiler): support directive inputs with interpolations on `<ng-template>`s (#35984)
Prior to this commit, Ivy compiler didn't handle directive inputs with interpolations located on `<ng-template>` elements (e.g. `<ng-template dir="{{ field }}">`). That was the case for regular inputs as well as inputs that should be processed via i18n subsystem (e.g. `<ng-template i18n-dir dir="Hello {{ name }}">`). This commit adds support for such expressions for explicit `<ng-template>`s as well as a number of tests to confirm the behavior.

Fixes #35752.

PR Close #35984
2020-03-16 10:51:18 -07:00
Andrew Kushnir 0bf6e58db2 fix(compiler): process `imports` first and `declarations` second while calculating scopes (#35850)
Prior to this commit, while calculating the scope for a module, Ivy compiler processed `declarations` field first and `imports` after that. That results in a couple issues:

* for Pipes with the same `name` and present in `declarations` and in an imported module, Pipe from imported module was selected. In View Engine the logic is opposite: Pipes from `declarations` field receive higher priority.
* for Directives with the same selector and present in `declarations` and in an imported module, we first invoked the logic of a Directive from `declarations` field and after that - imported Directive logic. In View Engine, it was the opposite and the logic of a Directive from the `declarations` field was invoked last.

In order to align Ivy and View Engine behavior, this commit updates the logic in which we populate module scope: we first process all imports and after that handle `declarations` field. As a result, in Ivy both use-cases listed above work similar to View Engine.

Resolves #35502.

PR Close #35850
2020-03-10 14:16:59 -04:00
Matias Niemelä 15482e7367 Revert "feat(bazel): transform generated shims (in Ivy) with tsickle (#35848)" (#35970)
This reverts commit 9ff9a072e6.

PR Close #35970
2020-03-09 17:00:14 -04:00
Alex Rickabaugh 9ff9a072e6 feat(bazel): transform generated shims (in Ivy) with tsickle (#35848)
Currently, when Angular code is built with Bazel and with Ivy, generated
factory shims (.ngfactory files) are not processed via the majority of
tsickle's transforms. This is a subtle effect of the build infrastructure,
but it boils down to a TsickleHost method `shouldSkipTsickleProcessing`.

For ngc_wrapped builds (Bazel + Angular), this method is defined in the
`@bazel/typescript` (aka bazel rules_typescript) implementation of
`CompilerHost`. The default behavior is to skip tsickle processing for files
which are not present in the original `srcs[]` of the build rule. In
Angular's case, this includes all generated shim files.

For View Engine factories this is probably desirable as they're quite
complex and they've never been tested with tsickle. Ivy factories however
are smaller and very straightforward, and it makes sense to treat them like
any other output.

This commit adjusts two independent implementations of
`shouldSkipTsickleProcessing` to enable transformation of Ivy shims:

* in `@angular/bazel` aka ngc_wrapped, the upstream `@bazel/typescript`
  `CompilerHost` is patched to treat .ngfactory files the same as their
  original source file, with respect to tsickle processing.

  It is currently not possible to test this change as we don't have any test
  that inspects tsickle output with bazel. It will be extensively tested in
  g3.

* in `ngc`, Angular's own implementation is adjusted to allow for the
  processing of shims when compiling with Ivy. This enables a unit test to
  be written to validate the correct behavior of tsickle when given a host
  that's appropriately configured to process factory shims.

For ngtsc-as-a-plugin, a similar fix will need to be submitted upstream in
tsc_wrapped.

PR Close #35848
2020-03-09 13:06:33 -04:00
Alex Rickabaugh 2c41bb8490 fix(compiler): type-checking error for duplicate variables in templates (#35674)
It's an error to declare a variable twice on a specific template:

```html
<div *ngFor="let i of items; let i = index">
</div>
```

This commit introduces a template type-checking error which helps to detect
and diagnose this problem.

Fixes #35186

PR Close #35674
2020-03-03 13:52:50 -08:00
Doug Parker 9cf85d2177 fix(core): remove side effects from `ɵɵNgOnChangesFeature()` (#35769)
`ɵɵNgOnChangesFeature()` would set `ngInherit`, which is a side effect and also not necessary. This was pulled out to module scope so the function itself can be pure. Since it only curries another function, the call is entirely unnecessary. Updated the compiler to only generate a reference to this function, rather than a call to it, and removed the extra curry indirection.

PR Close #35769
2020-03-03 08:50:03 -08:00
Andrew Kushnir 40da51f641 fix(compiler): support i18n attributes on `<ng-template>` tags (#35681)
Prior to this commit, i18n attributes defined on `<ng-template>` tags were not processed by the compiler. This commit adds the necessary logic to handle i18n attributes in the same way how these attrs are processed for regular elements.

PR Close #35681
2020-03-02 08:18:06 -08:00
JoostK 40039d8068 fix(ivy): narrow `NgIf` context variables in template type checker (#35125)
When the `NgIf` directive is used in a template, its context variables
can be used to capture the bound value. This is typically used together
with a pipe or function call, where the resulting value is captured in a
context variable. There's two syntax forms available:

1. Binding to `NgIfContext.ngIf` using the `as` syntax:
```html
<span *ngIf="(user$ | async) as user">{{user.name}}</span>
```

2. Binding to `NgIfContext.$implicit` using the `let` syntax:
```html
<span *ngIf="user$ | async; let user">{{user.name}}</span>
```

Because of the semantics of `ngIf`, it is known that the captured
context variable is non-nullable, however the template type checker
would not consider them as such and still report errors when
`strictNullTypes` is enabled.

This commit updates `NgIf`'s context guard to make the types of the
context variables non-nullable, avoiding the issue.

Fixes #34572

PR Close #35125
2020-02-28 07:39:57 -08:00
JoostK 3e3a1ef30d fix(ivy): support dynamic query tokens in AOT mode (#35307)
For view and content queries, the Ivy compiler attempts to statically
evaluate the predicate token so that string predicates containing
comma-separated reference names can be split into an array of strings
during compilation. When the predicate is a dynamic value that cannot be
statically interpreted at compile time, the compiler would previously
produce an error. This behavior breaks a use-case where an `InjectionToken`
is being used as query predicate, as the usage of the `new` keyword
prevents such predicates from being statically evaluated.

This commit changes the behavior to no longer produce an error for
dynamic values. Instead, the expression is emitted as is into the
generated code, postponing the evaluation to happen at runtime.

Fixes #34267
Resolves FW-1828

PR Close #35307
2020-02-27 16:05:21 -08:00
Alex Rickabaugh 173a1ac8e4 fix(ivy): better inference for circularly referenced directive types (#35622)
It's possible to pass a directive as an input to itself. Consider:

```html
<some-cmp #ref [value]="ref">
```

Since the template type-checker attempts to infer a type for `<some-cmp>`
using the values of its inputs, this creates a circular reference where the
type of the `value` input is used in its own inference:

```typescript
var _t0 = SomeCmp.ngTypeCtor({value: _t0});
```

Obviously, this doesn't work. To resolve this, the template type-checker
used to generate a `null!` expression when a reference would otherwise be
circular:

```typescript
var _t0 = SomeCmp.ngTypeCtor({value: null!});
```

This effectively asks TypeScript to infer a value for this context, and
works well to resolve this simple cycle. However, if the template
instead tries to use the circular value in a larger expression:

```html
<some-cmp #ref [value]="ref.prop">
```

The checker would generate:

```typescript
var _t0 = SomeCmp.ngTypeCtor({value: (null!).prop});
```

In this case, TypeScript can't figure out any way `null!` could have a
`prop` key, and so it infers `never` as the type. `(never).prop` is thus a
type error.

This commit implements a better fallback pattern for circular references to
directive types like this. Instead of generating a `null!` in place for the
reference, a type is inferred by calling the type constructor again with
`null!` as its input. This infers the widest possible type for the directive
which is then used to break the cycle:

```typescript
var _t0 = SomeCmp.ngTypeCtor(null!);
var _t1 = SomeCmp.ngTypeCtor({value: _t0.prop});
```

This has the desired effect of validating that `.prop` is legal for the
directive type (the type of `#ref`) while also avoiding a cycle.

Fixes #35372
Fixes #35603
Fixes #35522

PR Close #35622
2020-02-26 12:57:08 -08:00
Alex Rickabaugh 2d89b5d13d fix(ivy): provide a more detailed error message for NG6002/NG6003 (#35620)
NG6002/NG6003 are errors produced when an NgModule being compiled has an
imported or exported type which does not have the proper metadata (that is,
it doesn't appear to be an @NgModule, or @Directive, etc. depending on
context).

Previously this error message was a bit sparse. However, Github issues show
that this is the most common error users receive when for whatever reason
ngcc wasn't able to handle one of their libraries, or they just didn't run
it. So this commit changes the error message to offer a bit more useful
context, instructing users differently depending on whether the class in
question is from their own project, from NPM, or from a monorepo-style local
dependency.

PR Close #35620
2020-02-26 12:56:47 -08:00
crisbeto 22786c8e88 fix(ivy): incorrectly generating shared pure function between null and object literal (#35481)
In #33705 we made it so that we generate pure functions for object/array literals in order to avoid having them be shared across elements/views. The problem this introduced is that further down the line the `ContantPool` uses the generated literal in order to figure out whether to share an existing factory or to create a new one. `ConstantPool` determines whether to share a factory by creating a key from the AST node and using it to look it up in the factory cache, however the key generation function didn't handle function invocations and replaced them with `null`. This means that the key for `{foo: pureFunction0(...)}` and `{foo: null}` are the same.

These changes rework the logic so that instead of generating a `null` key
for function invocations, we generate a variable called `<unknown>` which
shouldn't be able to collide with anything.

Fixes #35298.

PR Close #35481
2020-02-20 15:23:58 -08:00
Kristiyan Kostadinov 9228d7f15d perf(ivy): remove unused event argument in listener instructions (#35097)
Currently Ivy always generates the `$event` function argument, even if it isn't being used by the listener expressions. This can lead to unnecessary bytes being generated, because optimizers won't remove unused arguments by default. These changes add some logic to avoid adding the argument when it isn't required.

PR Close #35097
2020-02-20 15:22:13 -08:00
Miško Hevery 2562a3b1b0 fix(ivy): Add `style="{{exp}}"` based interpolation (#34202)
Fixes #33575

Add support for interpolation in styles as shown:
```
<div style="color: {{exp1}}; width: {{exp2}};">
```

PR Close #34202
2020-02-20 15:13:10 -08:00
Andrew Kushnir 646655d09a fix(compiler): use FatalDiagnosticError to generate better error messages (#35244)
Prior to this commit, decorator handling logic in Ngtsc used `Error` to throw errors. This commit replaces most of these instances with `FatalDiagnosticError` class, which provider a better diagnostics error (including location of the problematic code).

PR Close #35244
2020-02-20 11:25:23 -08:00
JoostK 5de5b52beb fix(ivy): repeat template guards to narrow types in event handlers (#35193)
In Ivy's template type checker, event bindings are checked in a closure
to allow for accurate type inference of the `$event` parameter. Because
of the closure, any narrowing effects of template guards will no longer
be in effect when checking the event binding, as TypeScript assumes that
the guard outside of the closure may no longer be true once the closure
is invoked. For more information on TypeScript's Control Flow Analysis,
please refer to https://github.com/microsoft/TypeScript/issues/9998.

In Angular templates, it is known that an event binding can only be
executed when the view it occurs in is currently rendered, hence the
corresponding template guard is known to hold during the invocation of
an event handler closure. As such, it is desirable that any narrowing
effects from template guards are still in effect within the event
handler closure.

This commit tweaks the generated Type-Check Block (TCB) to repeat all
template guards within an event handler closure. This achieves the
narrowing effect of the guards even within the closure.

Fixes #35073

PR Close #35193
2020-02-07 13:06:00 -08:00
Alex Rickabaugh c35671c0a4 fix(ivy): template type-check errors from TS should not use NG error codes (#35146)
A bug previously caused the template type-checking diagnostics produced by
TypeScript for template expressions to use -99-prefixed error codes. These
codes are converted to "NG" errors instead of "TS" errors during diagnostic
printing. This commit fixes the issue.

PR Close #35146
2020-02-04 15:59:01 -08:00
JoostK 5cada5cce1 fix(ivy): recompile on template change in ngc watch mode on Windows (#34015)
In #33551, a bug in `ngc --watch` mode was fixed so that a component is
recompiled when its template file is changed. Due to insufficient
normalization of files paths, this fix did not have the desired effect
on Windows.

Fixes #32869

PR Close #34015
2020-02-04 10:40:22 -08:00
Kristiyan Kostadinov 304584c291 perf(ivy): remove unused argument in hostBindings function (#34969)
We had some logic for generating and passing in the `elIndex` parameter into the `hostBindings` function, but it wasn't actually being used for anything. The only place left that had a reference to it was the `StylingBuilder` and it only stored it without referencing it again.

PR Close #34969
2020-01-27 12:49:35 -08:00
Andrew Kushnir 6e5cfd2cd2 fix(ivy): catch FatalDiagnosticError thrown from preanalysis phase (#34801)
Component's decorator handler exposes `preanalyze` method to preload async resources (templates, stylesheets). The logic in preanalysis phase may throw `FatalDiagnosticError` errors that contain useful information regarding the origin of the problem. However these errors from preanalysis phase were not intercepted in TraitCompiler, resulting in just error message text be displayed. This commit updates the logic to handle FatalDiagnosticError and transform it before throwing, so that the result diagnostic errors contain the necessary info.

PR Close #34801
2020-01-27 10:58:27 -08:00
Miško Hevery 5aabe93abe refactor(ivy): Switch styling to new reconcile algorithm (#34616)
NOTE: This change must be reverted with previous deletes so that it code remains in build-able state.

This change deletes old styling code and replaces it with a simplified styling algorithm.

The mental model for the new algorithm is:
- Create a linked list of styling bindings in the order of priority. All styling bindings ere executed in compiled order and than a linked list of bindings is created in priority order.
- Flush the style bindings at the end of `advance()` instruction. This implies that there are two flush events. One at the end of template `advance` instruction in the template. Second one at the end of `hostBindings` `advance` instruction when processing host bindings (if any).
- Each binding instructions effectively updates the string to represent the string at that location. Because most of the bindings are additive, this is a cheap strategy in most cases. In rare cases the strategy requires removing tokens from the styling up to this point. (We expect that to be rare case)S Because, the bindings are presorted in the order of priority, it is safe to resume the processing of the concatenated string from the last change binding.

PR Close #34616
2020-01-24 12:23:00 -08:00
Matias Niemelä 4005815114 refactor(ivy): generate 2 slots per styling instruction (#34616)
Compiler keeps track of number of slots (`vars`) which are needed for binding instructions. Normally each binding instructions allocates a single slot in the `LView` but styling instructions need to allocate two slots.

PR Close #34616
2020-01-24 12:22:44 -08:00
Miško Hevery 2961bf06c6 refactor(ivy): move `hostVars`/`hostAttrs` from instruction to `DirectiveDef` (#34683)
This change moves information from instructions to declarative position:
- `ɵɵallocHostVars(vars)` => `DirectiveDef.hostVars`
- `ɵɵelementHostAttrs(attrs)` => `DirectiveDef.hostAttrs`

When merging directives it is necessary to know about `hostVars` and `hostAttrs`. Before this change the information was stored in the `hostBindings` function. This was problematic, because in order to get to the information the `hostBindings` would have to be executed. In order for `hostBindings` to be executed the directives would have to be instantiated. This means that the directive instantiation would happen before we had knowledge about the `hostAttrs` and as a result the directive could observe in the constructor that not all of the `hostAttrs` have been applied. This further complicates the runtime as we have to apply `hostAttrs` in parts over many invocations.

`ɵɵallocHostVars` was unnecessarily complicated because it would have to update the `LView` (and Blueprint) while existing directives are already executing. By moving it out of `hostBindings` function we can access it statically and we can create correct `LView` (and Blueprint) in a single pass.

This change only changes how the instructions are generated, but does not change the runtime much. (We cheat by emulating the old behavior by calling `ɵɵallocHostVars` and `ɵɵelementHostAttrs`) Subsequent change will refactor the runtime to take advantage of the static information.

PR Close #34683
2020-01-24 12:22:10 -08:00
Alex Rickabaugh 24b2f1da2b refactor(ivy): introduce the 'core' package and split apart NgtscProgram (#34887)
Previously, NgtscProgram lived in the main @angular/compiler-cli package
alongside the legacy View Engine compiler. As a result, the main package
depended on all of the ngtsc internal packages, and a significant portion of
ngtsc logic lived in NgtscProgram.

This commit refactors NgtscProgram and moves the main logic of compilation
into a new 'core' package. The new package defines a new API which enables
implementers of TypeScript compilers (compilers built using the TS API) to
support Angular transpilation as well. It involves a new NgCompiler type
which takes a ts.Program and performs Angular analysis and transformations,
as well as an NgCompilerHost which wraps an input ts.CompilerHost and adds
any extra Angular files.

Together, these two classes are used to implement a new NgtscProgram which
adapts the legacy api.Program interface used by the View Engine compiler
onto operations on the new types. The new NgtscProgram implementation is
significantly smaller and easier to reason about.

The new NgCompilerHost replaces the previous GeneratedShimsHostWrapper which
lived in the 'shims' package.

A new 'resource' package is added to support the HostResourceLoader which
previously lived in the outer compiler package.

As a result of the refactoring, the dependencies of the outer
@angular/compiler-cli package on ngtsc internal packages are significantly
trimmed.

This refactoring was driven by the desire to build a plugin interface to the
compiler so that tsc_wrapped (another consumer of the TS compiler APIs) can
perform Angular transpilation on user request.

PR Close #34887
2020-01-24 08:59:59 -08:00
Alex Rickabaugh 5b2fa3cfd3 fix(ivy): correctly emit component when it's removed from its module (#34912)
This commit fixes a bug in the incremental rebuild engine of ngtsc, where if
a component was removed from its NgModule, it would not be properly
re-emitted.

The bug stemmed from the fact that whether to emit a file was a decision
based purely on the updated dependency graph, which captures the dependency
structure of the rebuild program. This graph has no edge from the component
to its former module (as it was removed, of course), so the compiler
erroneously decides not to emit the component.

The bug here is that the compiler does know, from the previous dependency
graph, that the component file has logically changed, since its previous
dependency (the module file) has changed. This information was not carried
forward into the set of files which need to be emitted, because it was
assumed that the updated dependency graph was a more accurate source of that
information.

With this commit, the set of files which need emit is pre-populated with the
set of logically changed files, to cover edge cases like this.

Fixes #34813

PR Close #34912
2020-01-23 13:30:10 -08:00
Alex Rickabaugh 0c8d085666 fix(ivy): use any for generic context checks when !strictTemplates (#34649)
Previously, the template type-checker would always construct a generic
template context type with correct bounds, even when strictTemplates was
disabled. This meant that type-checking of expressions involving that type
was stricter than View Engine.

This commit introduces a 'strictContextGenerics' flag which behaves
similarly to other 'strictTemplates' flags, and switches the inference of
generic type parameters on the component context based on the value of this
flag.

PR Close #34649
2020-01-23 10:31:48 -08:00
Alex Rickabaugh cb11380515 fix(ivy): disable use of aliasing in template type-checking (#34649)
FileToModuleHost aliasing supports compilation within environments that have
two properties:

1. A `FileToModuleHost` exists which defines canonical module names for any
   given TS file.
2. Dependency restrictions exist which prevent the import of arbitrary files
   even if such files are within the .d.ts transitive closure of a
   compilation ("strictdeps").

In such an environment, generated imports can only go through import paths
which are already present in the user program. The aliasing system supports
the generation and consumption of such imports at runtime.

`FileToModuleHost` aliasing does not emit re-exports in .d.ts files. This
means that it's safe to rely on alias re-exports in generated .js code (they
are guaranteed to exist at runtime) but not in template type-checking code
(since TS will not be able to follow such imports). Therefore, non-aliased
imports should be used in template type-checking code.

This commit adds a `NoAliasing` flag to `ImportFlags` and sets it when
generating imports in template type-checking code. The testing environment
is also patched to support resolution of FileToModuleHost canonical paths
within the template type-checking program, enabling testing of this change.

PR Close #34649
2020-01-23 10:31:48 -08:00
Alex Rickabaugh 22c957a93d fix(ivy): type-checking of properties which map to multiple fields (#34649)
It's possible to declare multiple inputs for a directive/component which all
map to the same property name. This is usually done in error, as only one of
any bindings to the property will "win".

In the template type-checker, an error was previously being raised as a
result of this ambiguity. Specifically, a type constructor was produced
which required a binding for each field, but only one of the fields had
a value via the binding. TypeScript would (rightfully) error on missing
values for the remaining fields. This ultimately was happening when the
code which generated the default values for "unset" inputs belonging to
directives or pipes used the final mapping from properties to fields as
a source for field names.

Instead, this commit uses the original list of fields to generate unset
input values, which correctly provides values for fields which shared a
property name but didn't receive the final binding.

PR Close #34649
2020-01-23 10:31:47 -08:00
Matias Niemelä 32489c7426 revert: refactor(ivy): remove styleSanitizer instruction in favor of an inline param (#34480) (#34910)
This reverts commit 84d24c08e1.

PR Close #34910
2020-01-22 15:59:33 -05:00
Matias Niemelä 84d24c08e1 refactor(ivy): remove styleSanitizer instruction in favor of an inline param (#34480)
This patch removes the need for the styleSanitizer() instruction in
favor of passing the sanitizer into directly into the styleProp
instruction.

This patch also increases the binding index size for all style/class bindings in preparation for #34418

PR Close #34480
2020-01-22 14:35:00 -05:00
Andrew Kushnir 39ec188003 fix(ivy): more accurate detection of pipes in host bindings (#34655)
Pipes in host binding expressions are not supported in View Engine and Ivy, but in some more complex cases (like `(value | pipe) === true`) compiler was not reporting errors. This commit extends Ivy logic to detect pipes in host binding expressions and throw in cases bindings are present. View Engine behavior remains the same.

PR Close #34655
2020-01-21 13:22:00 -05:00
Greg Magolan a28c02bf89 build: derive ts_library dep from jasmine_node_test boostrap label if it ends in `_es5` (#34736)
PR Close #34736
2020-01-15 14:58:07 -05:00
Greg Magolan aee67f08d9 test: handle bootstrap templated_args in jasmine_node_test defaults.bzl (#34736)
PR Close #34736
2020-01-15 14:58:07 -05:00
Greg Magolan dcff76e8b9 refactor: handle breaking changes in rules_nodejs 1.0.0 (#34736)
The major one that affects the angular repo is the removal of the bootstrap attribute in nodejs_binary, nodejs_test and jasmine_node_test in favor of using templated_args --node_options=--require=/path/to/script. The side-effect of this is that the bootstrap script does not get the require.resolve patches with explicitly loading the targets _loader.js file.

PR Close #34736
2020-01-15 14:58:07 -05:00
crisbeto c3c72f689a fix(ivy): handle overloaded constructors in ngtsc (#34590)
Currently ngtsc looks for the first `ConstructorDeclaration` when figuring out what the parameters are so that it can generate the DI instructions. The problem is that if a constructor has overloads, it'll have several `ConstructorDeclaration` members with a different number of parameters. These changes tweak the logic so it looks for the constructor implementation.

PR Close #34590
2020-01-14 15:17:09 -08:00
atscott 538d0446b5 Revert "refactor: handle breaking changes in rules_nodejs 1.0.0 (#34589)" (#34730)
This reverts commit 9bb349e1c8.

PR Close #34730
2020-01-10 14:12:15 -08:00
atscott 5e60215470 Revert "test: handle bootstrap templated_args in jasmine_node_test defaults.bzl (#34589)" (#34730)
This reverts commit da4782e67f.

PR Close #34730
2020-01-10 14:12:15 -08:00
atscott 24679d8676 Revert "build: derive ts_library dep from jasmine_node_test boostrap label if it ends in `_es5` (#34589)" (#34730)
This reverts commit 79a0d007b4.

PR Close #34730
2020-01-10 14:12:14 -08:00
Greg Magolan 79a0d007b4 build: derive ts_library dep from jasmine_node_test boostrap label if it ends in `_es5` (#34589)
PR Close #34589
2020-01-10 08:32:00 -08:00
Greg Magolan da4782e67f test: handle bootstrap templated_args in jasmine_node_test defaults.bzl (#34589)
PR Close #34589
2020-01-10 08:31:59 -08:00
Greg Magolan 9bb349e1c8 refactor: handle breaking changes in rules_nodejs 1.0.0 (#34589)
The major one that affects the angular repo is the removal of the bootstrap attribute in nodejs_binary, nodejs_test and jasmine_node_test in favor of using templated_args --node_options=--require=/path/to/script. The side-effect of this is that the bootstrap script does not get the require.resolve patches with explicitly loading the targets _loader.js file.

PR Close #34589
2020-01-10 08:31:59 -08:00
Andrew Scott 4d7a9db44c fix(ivy): Ensure ngProjectAs marker name appears at even attribute index (#34617)
The `getProjectAsAttrValue` in `node_selector_matcher` finds the
ProjectAs marker and then additionally checks that the marker appears in
an even index of the node attributes because "attribute names are stored
at even indexes". This is true for "regular" attribute bindings but
classes, styles, bindings, templates, and i18n do not necessarily follow
this rule because there can be an uneven number of them, causing the
next "special" attribute "name" to appear at an odd index. To address
this issue, ensure ngProjectAs is placed right after "regular"
attributes.

PR Close #34617
2020-01-07 10:51:46 -08:00
Andrew Kushnir b4c5bdb093 fix(ivy): append `advance` instructions before `i18nExp` (#34436)
Prior to this commit, there were no `advance` instructions generated before `i18nExp` instructions and as a result, lifecycle hooks for components used inside i18n blocks were flushed too late. This commit adds the logic to generate `advance` instructions in front of `i18nExp` ones (similar to what we have in other places like interpolations, property bindings, etc), so that the necessary lifecycle hooks are flushed before expression value is captured.

PR Close #34436
2020-01-07 10:31:45 -08:00
JoostK e116816131 refactor(ivy): let `strictTemplates` imply `fullTemplateTypeCheck` (#34195)
Previously, it was required that both `fullTemplateTypeCheck` and
`strictTemplates` had to be enabled for strict mode to be enabled. This
is strange, as `strictTemplates` implies `fullTemplateTypeCheck`. This
commit makes setting the `fullTemplateTypeCheck` flag optional so that
strict mode can be enabled by just setting `strictTemplates`.

PR Close #34195
2020-01-06 11:07:54 -08:00
JoostK 2e82357611 refactor(ivy): verify template type check options are compatible (#34195)
It is now an error if '"fullTemplateTypeCheck"' is disabled while
`"strictTemplates"` is enabled, as enabling the latter implies that the
former is also enabled.

PR Close #34195
2020-01-06 11:07:54 -08:00
JoostK 1de49ba369 refactor(ivy): consistently translate types to `ts.TypeNode` (#34021)
The compiler has a translation mechanism to convert from an Angular
`Type` to a `ts.TypeNode`, as appropriate. Prior to this change, it
would translate certain Angular expressions into their value equivalent
in TypeScript, instead of the correct type equivalent. This was possible
as the `ExpressionVisitor` interface is not strictly typed, with `any`s
being used for return values.

For example, a literal object was translated into a
`ts.ObjectLiteralExpression`, containing `ts.PropertyAssignment` nodes
as its entries. This has worked without issues as their printed
representation is identical, however it was incorrect from a semantic
point of view. Instead, a `ts.TypeLiteralNode` is created with
`ts.PropertySignature` as its members, which corresponds with the type
declaration of an object literal.

PR Close #34021
2020-01-06 11:06:07 -08:00
crisbeto cf37c003ff feat(ivy): error in ivy when inheriting a ctor from an undecorated base (#34460)
Angular View Engine uses global knowledge to compile the following code:

```typescript
export class Base {
  constructor(private vcr: ViewContainerRef) {}
}

@Directive({...})
export class Dir extends Base {
  // constructor inherited from base
}
```

Here, `Dir` extends `Base` and inherits its constructor. To create a `Dir`
the arguments to this inherited constructor must be obtained via dependency
injection. View Engine is able to generate a correct factory for `Dir` to do
this because via metadata it knows the arguments of `Base`'s constructor,
even if `Base` is declared in a different library.

In Ivy, DI is entirely a runtime concept. Currently `Dir` is compiled with
an ngDirectiveDef field that delegates its factory to `getInheritedFactory`.
This looks for some kind of factory function on `Base`, which comes up
empty. This case looks identical to an inheritance chain with no
constructors, which works today in Ivy.

Both of these cases will now become an error in this commit. If a decorated
class inherits from an undecorated base class, a diagnostic is produced
informing the user of the need to either explicitly declare a constructor or
to decorate the base class.

PR Close #34460
2019-12-18 15:04:49 -08:00
crisbeto dcc8ff4ce7 feat(ivy): throw compilation error when providing undecorated classes (#34460)
Adds a compilation error if the consumer tries to pass in an undecorated class into the `providers` of an `NgModule`, or the `providers`/`viewProviders` arrays of a `Directive`/`Component`.

PR Close #34460
2019-12-18 15:04:49 -08:00
Alex Rickabaugh 498a2ffba3 fix(ivy): don't produce template diagnostics when scope is invalid (#34460)
Previously, ngtsc would perform scope analysis (which directives/pipes are
available inside a component's template) and template type-checking of that
template as separate steps. If a component's scope was somehow invalid (e.g.
its NgModule imported something which wasn't another NgModule), the
component was treated as not having a scope. This meant that during template
type-checking, errors would be produced for any invalid expressions/usage of
other components that should have been in the scope.

This commit changes ngtsc to skip template type-checking of a component if
its scope is erroneous (as opposed to not present in the first place). Thus,
users aren't overwhelmed with diagnostic errors for the template and are
only informed of the root cause of the problem: an invalid NgModule scope.

Fixes #33849

PR Close #34460
2019-12-18 15:04:49 -08:00
Alex Rickabaugh 763f8d470a fix(ivy): validate the NgModule declarations field (#34404)
This commit adds three previously missing validations to
NgModule.declarations:

1. It checks that declared classes are actually within the current
   compilation.

2. It checks that declared classes are directives, components, or pipes.

3. It checks that classes are declared in at most one NgModule.

PR Close #34404
2019-12-17 11:39:48 -08:00
Alex Rickabaugh 6ba5fdc208 fix(ivy): generate a better error for template var writes (#34339)
In Ivy it's illegal for a template to write to a template variable. So the
template:

```html
<ng-template let-somevar>
  <button (click)="somevar = 3">Set var to 3</button>
</ng-template>
```

is erroneous and previously would fail to compile with an assertion error
from the `TemplateDefinitionBuilder`. This error wasn't particularly user-
friendly, though, as it lacked the context of which template or where the
error occurred.

In this commit, a new check in template type-checking is added which detects
such erroneous writes and produces a true diagnostic with the appropriate
context information.

Closes #33674

PR Close #34339
2019-12-12 13:13:32 -08:00
Alex Rickabaugh 74edde0a94 perf(ivy): reuse prior analysis work during incremental builds (#34288)
Previously, the compiler performed an incremental build by analyzing and
resolving all classes in the program (even unchanged ones) and then using
the dependency graph information to determine which .js files were stale and
needed to be re-emitted. This algorithm produced "correct" rebuilds, but the
cost of re-analyzing the entire program turned out to be higher than
anticipated, especially for component-heavy compilations.

To achieve performant rebuilds, it is necessary to reuse previous analysis
results if possible. Doing this safely requires knowing when prior work is
viable and when it is stale and needs to be re-done.

The new algorithm implemented by this commit is such:

1) Each incremental build starts with knowledge of the last known good
   dependency graph and analysis results from the last successful build,
   plus of course information about the set of files changed.

2) The previous dependency graph's information is used to determine the
   set of source files which have "logically" changed. A source file is
   considered logically changed if it or any of its dependencies have
   physically changed (on disk) since the last successful compilation. Any
   logically unchanged dependencies have their dependency information copied
   over to the new dependency graph.

3) During the `TraitCompiler`'s loop to consider all source files in the
   program, if a source file is logically unchanged then its previous
   analyses are "adopted" (and their 'register' steps are run). If the file
   is logically changed, then it is re-analyzed as usual.

4) Then, incremental build proceeds as before, with the new dependency graph
   being used to determine the set of files which require re-emitting.

This analysis reuse avoids template parsing operations in many circumstances
and significantly reduces the time it takes ngtsc to rebuild a large
application.

Future work will increase performance even more, by tackling a variety of
other opportunities to reuse or avoid work.

PR Close #34288
2019-12-12 13:11:45 -08:00
JoostK b72c7a89a9 refactor(ivy): include generic type for `ModuleWithProviders` in .d.ts files (#34235)
The `ModuleWithProviders` type has an optional type parameter that
should be specified to indicate what NgModule class will be provided.
This enables the Ivy compiler to statically determine the NgModule type
from the declaration files. This type parameter will become required in
the future, however to aid in the migration the compiler will detect
code patterns where using `ModuleWithProviders` as return type is
appropriate, in which case it transforms the emitted .d.ts files to
include the generic type argument.

This should reduce the number of occurrences where `ModuleWithProviders`
is referenced without its generic type argument.

Resolves FW-389

PR Close #34235
2019-12-10 16:34:47 -08:00
JoostK 0984fbc748 fix(compiler-cli): allow declaration-only template type check members (#34296)
The metadata collector for View Engine compilations emits error symbols
for static class members that have not been initialized, which prevents
a library from building successfully when `strictMetadataEmit` is
enabled, which is recommended for libraries to avoid issues in library
consumers. This is troublesome for libraries that are adopting static
members for the Ivy template type checker: these members don't need a
value assignment as only their type is of importance, however this
causes metadata errors. As such, a library used to be required to
initialize the special static members to workaround this error,
undesirably introducing a code-size overhead in terms of emitted
JavaScript code.

This commit modifies the collector logic to specifically ignore
the special static members for Ivy's template type checker, preventing
any errors from being recorded during the metadata collection.

PR Close #34296
2019-12-10 16:31:23 -08:00
JoostK 22ad701134 fix(ivy): inherit static coercion members from base classes (#34296)
For Ivy's template type checker it is possible to let a directive
specify static members to allow a wider type for some input:

```typescript
export class MatSelect {
  @Input() disabled: boolean;

  static ngAcceptInputType_disabled: boolean | string;
}
```

This allows a binding to the `MatSelect.disabled` input to be of type
boolean or string, whereas the `disabled` property itself is only of
type boolean.

Up until now, any static `ngAcceptInputType_*` property was not
inherited for subclasses of a directive class. This is cumbersome, as
the directive's inputs are inherited, so any acceptance member should as
well. To resolve this limitation, this commit extends the flattening of
directive metadata to include the acceptance members.

Fixes #33830
Resolves FW-1759

PR Close #34296
2019-12-10 16:31:23 -08:00
Alex Rickabaugh 9fa2c398e7 fix(compiler): switch to modern diagnostic formatting (#34234)
The compiler exports a `formatDiagnostics` function which consumers can use
to print both ts and ng diagnostics. However, this function was previously
using the "old" style TypeScript diagnostics, as opposed to the modern
diagnostic printer which uses terminal colors and prints additional context
information.

This commit updates `formatDiagnostics` to use the modern formatter, plus to
update Ivy's negative error codes to Angular 'NG' errors.

The Angular CLI needs a little more work to use this function for printing
TS diagnostics, but this commit alone should fix Bazel builds as ngc-wrapped
goes through `formatDiagnostics`.

PR Close #34234
2019-12-09 11:37:49 -08:00
Alex Rickabaugh 718d7fe5fe fix(ivy): properly parenthesize ternary expressions when emitted (#34221)
Previously, ternary expressions were emitted as:

condExpr ? trueCase : falseCase

However, this causes problems when ternary operations are nested. In
particular, a template expression of the form:

a?.b ? c : d

would have compiled to:

a == null ? null : a.b ? c : d

The ternary operator is right-associative, so that expression is interpreted
as:

a == null ? null : (a.b ? c : d)

when in reality left-associativity is desired in this particular instance:

(a == null ? null : a.b) ? c : d

This commit adds a check in the expression translator to detect such
left-associative usages of ternaries and to enforce such associativity with
parentheses when necessary.

A test is also added for the template type-checking expression translator,
to ensure it correctly produces right-associative expressions for ternaries
in the user's template.

Fixes #34087

PR Close #34221
2019-12-06 13:01:48 -08:00
Andrew Kushnir 634887c0e7 test(ivy): update `ngI18nClosureMode` flag usage in tests (#34224)
Commit that updated i18n message ids rendering (e524322c43) also introduced a couple tests that relied on a previous version of `ngI18nClosureMode` flag format. The `ngI18nClosureMode` usage format was changed in the followup commit (c4ce24647b) and triggered a problem with the mentioned tests. This commit updates the tests to a new `ngI18nClosureMode` flag usage format.

PR Close #34224
2019-12-03 23:03:27 -08:00
Pete Bacon Darwin c4ce24647b fix(compiler-cli): ensure that `ngI18nClosureMode` is guarded in generated code (#34211)
If the `ngI18nClosureMode` global check actually makes it
through to the runtime, then checks for its existence should
be guarded to prevent `Reference undefined` errors in strict
mode.

(Normally, it is stripped out by dead code elimination during
build optimization.)

This comment ensures that generated template code guards
this global check.

PR Close #34211
2019-12-03 16:18:12 -08:00
Kristiyan Kostadinov cca2616637 refactor(common): add defaults to new generic parameters (#34206)
This is a follow-up to #33997 where some new generic parameters were added without defaults which is technically a breaking change. These changes add the defaults.

PR Close #34206
2019-12-03 16:16:30 -08:00
Andrew Kushnir c50faa97ca fix(ivy): correctly support `ngProjectAs` on templates (#34200)
Prior to this commit, if a template (for example, generated using structural directive such as *ngIf) contains `ngProjectAs` attribute, it was not included into attributes array in generated code and as a result, these templates were not matched at runtime during content projection. This commit adds the logic to append `ngProjectAs` values into corresponding element's attribute arrays, so content projection works as expected.

PR Close #34200
2019-12-03 16:12:55 -08:00
crisbeto e6909bda89 fix(ivy): incorrectly validating html foreign objects inside svg (#34178)
Fixes ngtsc incorrectly logging an unknown element diagnostic for HTML elements that are inside an SVG `foreignObject` with the `xhtml` namespace.

Fixes #34171.

PR Close #34178
2019-12-03 10:29:45 -08:00
Pete Bacon Darwin e524322c43 refactor(compiler): i18n - render legacy i18n message ids (#34135)
Now that `@angular/localize` can interpret multiple legacy message ids in the
metablock of a `$localize` tagged template string, this commit adds those
ids to each i18n message extracted from component templates, but only if
the `enableI18nLegacyMessageIdFormat` is not `false`.

PR Close #34135
2019-12-03 10:15:53 -08:00
Kara Erickson 67eac733d2 refactor(ivy): do not generate providedIn: null (#34116)
We should only generate the `providedIn` property in injectable
defs if it has a non-null value. `null` does not communicate
any information to the runtime that isn't communicated already
by the absence of the property.

This should give us some modest code size savings.

PR Close #34116
2019-12-03 10:14:52 -08:00
Kara Erickson 755d2d572f refactor(ivy): remove unnecessary fac wrapper (#34076)
For injectables, we currently generate a factory function in the
injectable def (prov) that delegates to the factory function in
the factory def (fac). It looks something like this:

```
factory: function(t) { return Svc.fac(t); }
```

The extra wrapper function is unnecessary since the args for
the factory functions are the same. This commit changes the
compiler to generate this instead:

```
factory: Svc.fac
```

Because we are generating less code for each injectable, we
should see some modest code size savings. AIO's main bundle
is about 1 KB smaller.

PR Close #34076
2019-12-02 11:35:24 -08:00
crisbeto 02958c07f6 fix(common): reflect input type in NgIf context (#33997)
Fixes the content of `NgIf` being typed to any.

Fixes #31556.

PR Close #33997
2019-12-02 11:34:26 -08:00
crisbeto a6b6d74c00 fix(common): reflect input type in NgForOf context (#33997)
Fixes `NgForOf` not reflecting the type of its input in the `NgForOfContext`.

PR Close #33997
2019-12-02 11:34:26 -08:00
Andrew Kushnir 658087be7e fix(ivy): prevent unknown element check for AOT-compiled components (#34024)
Prior to this commit, the unknown element can happen twice for AOT-compiled components: once during compilation and once again at runtime. Due to the fact that `schemas` information is not present on Component and NgModule defs after AOT compilation, the second check (at runtime) may fail, even though the same check was successful at compile time. This commit updates the code to avoid the second check for AOT-compiled components by checking whether `schemas` information is present in a logic that executes the unknown element check.

PR Close #34024
2019-11-27 12:45:32 -08:00
Pete Bacon Darwin ee7857300b fix(ivy): i18n - ensure that escaped chars are handled in localized strings (#34065)
When creating synthesized tagged template literals, one must provide both
the "cooked" text and the "raw" (unparsed) text. Previously there were no
good APIs for creating the AST nodes with raw text for such literals.
Recently the APIs were improved to support this, and they do an extra
check to ensure that the raw text parses to be equal to the cooked text.

It turns out there is a bug in this check -
see https://github.com/microsoft/TypeScript/issues/35374.

This commit works around the bug by synthesizing a "head" node and morphing
it by changing its `kind` into the required node type.

// FW-1747

PR Close #34065
2019-11-27 10:36:36 -08:00
Joey Perrott 5e3f6d203d build: migrate references and scripts that set to build with ivy via compile=aot to use config=ivy (#33983)
Since config=ivy now sets the define=compile flag and the define=angular_ivy_enabled
flag to cause usage of Ivy, we can update all of the documentation and scripts that
reference compile=aot to use config=ivy.

PR Close #33983
2019-11-26 16:38:40 -05:00
Andrew Kushnir 5de7960f01 fix(ivy): take styles extracted from template into account in JIT mode (#34017)
Prior to this commit, all styles extracted from Component's template (defined using <style> tags) were ignored by JIT compiler, so only `styles` array values defined in @Component decorator were used. This change updates JIT compiler to take styles extracted from the template into account. It also ensures correct order where `styles` array values are applied first and template styles are applied second.

PR Close #34017
2019-11-25 22:38:42 -05:00
crisbeto 25dcc7631f fix(ivy): add flag to skip non-exported classes (#33921)
In ViewEngine we were only generating code for exported classes, however with Ivy we do it no matter whether the class has been exported or not. These changes add an extra flag that allows consumers to opt into the ViewEngine behavior. The flag works by treating non-exported classes as if they're set to `jit: true`.

Fixes #33724.

PR Close #33921
2019-11-25 16:36:44 -05:00
Alex Rickabaugh 4cf197998a fix(ivy): track changes across failed builds (#33971)
Previously, our incremental build system kept track of the changes between
the current compilation and the previous one, and used its knowledge of
inter-file dependencies to evaluate the impact of each change and emit the
right set of output files.

However, a problem arose if the compiler was not able to extract a
dependency graph successfully. This typically happens if the input program
contains errors. In this case the Angular analysis part of compilation is
never executed.

If a file changed in one of these failed builds, in the next build it
appears unchanged. This means that the compiler "forgets" to emit it!

To fix this problem, the compiler needs to know the set of changes made
_since the last successful build_, not simply since the last invocation.

This commit changes the incremental state system to much more explicitly
pass information from the previous to the next compilation, and in the
process to keep track of changes across multiple failed builds, until the
program can be analyzed successfully and the results of those changes
incorporated into the emit plan.

Fixes #32214

PR Close #33971
2019-11-22 17:39:35 -05:00
Andrew Kushnir fc2f6b8456 fix(ivy): wrap functions from "providers" in parentheses in Closure mode (#33609)
Due to the fact that Tsickle runs between analyze and transform phases in Angular, Tsickle may transform nodes (add comments with type annotations for Closure) that we captured during the analyze phase. As a result, some patterns where a function is returned from another function may trigger automatic semicolon insertion, which breaks the code (makes functions return `undefined` instead of a function). In order to avoid the problem, this commit updates the code to wrap all functions in some expression ("privders" and "viewProviders") in parentheses. More info can be found in Tsickle source code here: d797426257/src/jsdoc_transformer.ts (L1021)

PR Close #33609
2019-11-20 14:58:35 -08:00
JoostK 70311ebca1 fix(ivy): handle non-standard input/output names in template type checking (#33741)
The template type checker generates code to check directive inputs and
outputs, whose name may contain characters that can not be used as
identifier in TypeScript. Prior to this change, such names would be
emitted into the generated code as is, resulting in invalid code and
unexpected template type check errors.

This commit fixes the bug by representing the potentially invalid names
as string literal instead of raw identifier.

Fixes #33590

PR Close #33741
2019-11-20 14:51:12 -08:00
Alex Rickabaugh 08a4f10ee7 fix(ivy): move setClassMetadata calls into a pure iife (#33337)
This commit transforms the setClassMetadata calls generated by ngtsc from:

```typescript
/*@__PURE__*/ setClassMetadata(...);
```

to:

```typescript
/*@__PURE__*/ (function() {
  setClassMetadata(...);
})();
```

Without the IIFE, terser won't remove these function calls because the
function calls have arguments that themselves are function calls or other
impure expressions. In order to make the whole block be DCE-ed by terser,
we wrap it into IIFE and mark the IIFE as pure.

It should be noted that this change doesn't have any impact on CLI* with
build-optimizer, which removes the whole setClassMetadata block within
the webpack loader, so terser or webpack itself don't get to see it at
all. This is done to prevent cross-chunk retention issues caused by
webpack's internal module registry.

* actually we do expect a short-term size regression while
https://github.com/angular/angular-cli/pull/16228
is merged and released in the next rc of the CLI. But long term this
change does nothing to CLI + build-optimizer configuration and is done
primarly to correct the seemingly correct but non-function PURE annotation
that builds not using build-optimizer could rely on.

PR Close #33337
2019-11-20 12:55:58 -08:00
Alex Rickabaugh b54ed980ed fix(ivy): retain JIT metadata unless JIT mode is explicitly disabled (#33671)
NgModules in Ivy have a definition which contains various different bits
of metadata about the module. In particular, this metadata falls into two
categories:

* metadata required to use the module at runtime (for bootstrapping, etc)
in AOT-only applications.
* metadata required to depend on the module from a JIT-compiled app.

The latter metadata consists of the module's declarations, imports, and
exports. To support JIT usage, this metadata must be included in the
generated code, especially if that code is shipped to NPM. However, because
this metadata preserves the entire NgModule graph (references to all
directives and components in the app), it needs to be removed during
optimization for AOT-only builds.

Previously, this was done with a clever design:

1. The extra metadata was added by a function called `setNgModuleScope`.
A call to this function was generated after each NgModule.
2. This function call was marked as "pure" with a comment and used
`noSideEffects` internally, which causes optimizers to remove it.

The effect was that in dev mode or test mode (which use JIT), no optimizer
runs and the full NgModule metadata was available at runtime. But in
production (presumably AOT) builds, the optimizer runs and removes the JIT-
specific metadata.

However, there are cases where apps that want to use JIT in production, and
still make an optimized build. In this case, the JIT-specific metadata would
be erroneously removed. This commit solves that problem by adding an
`ngJitMode` global variable which guards all `setNgModuleScope` calls. An
optimizer can be configured to statically define this global to be `false`
for AOT-only builds, causing the extra metadata to be stripped.

A configuration for Terser used by the CLI is provided in `tooling.ts` which
sets `ngJitMode` to `false` when building AOT apps.

PR Close #33671
2019-11-20 12:55:43 -08:00
Alex Rickabaugh eb6975acaf fix(ivy): don't infer template context types when in full mode (#33537)
The Ivy template type-checker is capable of inferring the type of a
structural directive (such as NgForOf<T>). Previously, this was done with
fullTemplateTypeCheck: true, even if strictTemplates was false. View Engine
previously did not do this inference, and so this causes breakages if the
type of the template context is not what the user expected.

In particular, consider the template:

```html
<div *ngFor="let user of users as all">
  {{user.index}} out of {{all.length}}
</div>
```

As long as `users` is an array, this seems reasonable, because it appears
that `all` is an alias for the `users` array. However, this is misleading.

In reality, `NgForOf` is rendered with a template context that contains
both a `$implicit` value (for the loop variable `user`) as well as a
`ngForOf` value, which is the actual value assigned to `all`. The type of
`NgForOf`'s template context is `NgForContext<T>`, which declares `ngForOf`'s
type to be `NgIterable<T>`, which does not have a `length` property (due to
its incorporation of the `Iterable` type).

This commit stops the template type-checker from inferring template context
types unless strictTemplates is set (and strictInputTypes is not disabled).

Fixes #33527.

PR Close #33537
2019-11-20 11:47:42 -08:00
Alex Rickabaugh 4be8929844 fix(ivy): always re-analyze the program during incremental rebuilds (#33862)
Previously, the ngtsc compiler attempted to reuse analysis work from the
previous program during an incremental build. To do this, it had to prove
that the work was safe to reuse - that no changes made to the new program
would invalidate the previous analysis.

The implementation of this had a significant design flaw: if the previous
program had errors, the previous analysis would be missing significant
information, and the dependency graph extracted from it would not be
sufficient to determine which files should be re-analyzed to fill in the
gaps. This often meant that the build output after an error was resolved
would be wholly incorrect.

This commit switches ngtsc to take a simpler approach to incremental
rebuilds. Instead of attempting to reuse prior analysis work, the entire
program is re-analyzed with each compilation. This is actually not as
expensive as one might imagine - analysis is a fairly small part of overall
compilation time.

Based on the dependency graph extracted during this analysis, the compiler
then can make accurate decisions on whether to emit specific files. A new
suite of tests is added to validate behavior in the presence of source code
level errors.

This new approach is dramatically simpler than the previous algorithm, and
should always produce correct results for a semantically correct program.s

Fixes #32388
Fixes #32214

PR Close #33862
2019-11-20 11:46:02 -08:00
Alex Rickabaugh cf9aa4fd14 test(ivy): driveDiagnostics() works incrementally (#33862)
PR Close #33862
2019-11-20 11:46:02 -08:00
Alex Rickabaugh bb290cefae fix(core): make QueryList implement Iterable in the type system (#33536)
Originally, QueryList implemented Iterable and provided a Symbol.iterator
on its prototype. This caused issues with tree-shaking, so QueryList was
refactored and the Symbol.iterator added in its constructor instead. As
part of this change, QueryList no longer implemented Iterable directly.

Unfortunately, this meant that QueryList was no longer assignable to
Iterable or, consequently, NgIterable. NgIterable is used for NgFor's input,
so this meant that QueryList was not usable (in a type sense) for NgFor
iteration. View Engine's template type checking would not catch this, but
Ivy's did.

As a fix, this commit adds the declaration (but not the implementation) of
the Symbol.iterator function back to QueryList. This has no runtime effect,
so it doesn't affect tree-shaking of QueryList, but it ensures that
QueryList is assignable to NgIterable and thus usable with NgFor.

Fixes #29842

PR Close #33536
2019-11-19 13:43:53 -08:00
Alex Rickabaugh 850aee2448 fix(ivy): emit fs-relative paths when rootDir(s) aren't in effect (#33828)
Previously, the compiler assumed that all TS files logically within a
project existed under one or more "root directories". If the TS compiler
option `rootDir` or `rootDirs` was set, they would dictate the root
directories in use, otherwise the current directory was used.

Unfortunately this assumption was unfounded - it's common for projects
without explicit `rootDirs` to import from files outside the current
working directory. In such cases the `LogicalProjectStrategy` would attempt
to generate imports into those files, and fail. This would lead to no
`ReferenceEmitStrategy` being able to generate an import, and end in a
compiler assertion failure.

This commit introduces a new strategy to use when there are no `rootDirs`
explicitly present, the `RelativePathStrategy`. It uses simpler, filesystem-
relative paths to generate imports, even to files above the current working
directory.

Fixes #33659
Fixes #33562

PR Close #33828
2019-11-19 12:41:24 -08:00
Alex Rickabaugh 51720745dd test(ivy): support chdir() on the compiler's filesystem abstraction (#33828)
This commit adds the ability to change directories using the compiler's
internal filesystem abstraction. This is a prerequisite for writing tests
which are sensitive to the current working directory.

In addition to supporting the `chdir()` operation, this commit also fixes
`getDefaultLibLocation()` for mock filesystems to not assume `node_modules`
is in the current directory, but to resolve it similarly to how Node does
by progressively looking higher in the directory tree.

PR Close #33828
2019-11-19 12:41:24 -08:00
Kristiyan Kostadinov 8a052dc858 perf(ivy): chain styling instructions (#33837)
Adds support for chaining of `styleProp`, `classProp` and `stylePropInterpolateX` instructions whenever possible which should help generate less code. Note that one complication here is for `stylePropInterpolateX` instructions where we have to break into multiple chains if there are other styling instructions inbetween the interpolations which helps maintain the execution order.

PR Close #33837
2019-11-19 11:44:29 -08:00
Pete Bacon Darwin a6247aafa1 fix(ivy): i18n - support "\", "`" and "${" sequences in i18n messages (#33820)
Since i18n messages are mapped to `$localize` tagged template strings,
the "raw" version must be properly escaped. Otherwise TS will throw an
error such as:

```
Error: Debug Failure. False expression: Expected argument 'text' to be the normalized (i.e. 'cooked') version of argument 'rawText'.
```

This commit ensures that we properly escape these raw strings before creating
TS AST nodes from them.

PR Close #33820
2019-11-18 16:00:22 -08:00
Pete Bacon Darwin 62f7d0fe5c fix(ivy): i18n - ensure that colons in i18n metadata are not rendered (#33820)
The `:` char is used as a metadata marker in `$localize` messages.
If this char appears in the metadata it must be escaped, as `\:`.
Previously, although the `:` char was being escaped, the TS AST
being generated was not correct and so it was being output double
escaped, which meant that it appeared in the rendered message.

As of TS 3.6.2 the "raw" string can be specified when creating tagged
template AST nodes, so it is possible to correct this.

PR Close #33820
2019-11-18 16:00:22 -08:00
Misko Hevery ab0bcee144 fix(ivy): support for #id bootstrap selectors (#33784)
Fixes: #33485

PR Close #33784
2019-11-15 10:42:52 -08:00
Keen Yee Liau 9935aa43ad refactor(compiler-cli): Move diagnostics files to language service (#33809)
The following files are consumed only by the language service and do not
have to be in compiler-cli:

1. expression_diagnostics.ts
2. expression_type.ts
3. typescript_symbols.ts
4. symbols.ts

PR Close #33809
2019-11-14 09:29:07 -08:00
George Kalpakas c79d50f38f refactor(compiler-cli): avoid superfluous parenthesis around statements (#33514)
Previously, due to a bug a `Context` with `isStatement: false` could be
returned in places where a `Context` with `isStatement: true` was
requested. As a result, some statements would be unnecessarily wrapped
in parenthesis.

This commit fixes the bug in `Context#withStatementMode` to always
return a `Context` with the correct `isStatement` value. Note that this
does not have any impact on the generated code other than avoiding some
superfluous parenthesis on certain statements.

PR Close #33514
2019-11-13 13:49:30 -08:00
crisbeto fcdada53f1 fix(ivy): constant object literals shared across element and component instances (#33705)
Currently if a consumer does something like the following, the object literal will be shared across the two elements and any instances of the component template. The same applies to array literals:

```
<div [someDirective]="{}"></div>
<div [someDirective]="{}"></div>
```

These changes make it so that we generate a pure function even if an object is constant so that each instance gets its own object.

Note that the original design for this fix included moving the pure function factories into the `consts` array. In the process of doing so I realized that pure function are also used inside of directive host bindings which means that we don't have access to the `consts`.

These changes also:
* Fix an issue that meant that the `pureFunction0` instruction could only be run during creation mode.
* Make the `getConstant` utility slightly more convenient to use. This isn't strictly required for these changes to work, but I had made it as a part of a larger refactor that I ended up reverting.

PR Close #33705
2019-11-13 13:36:41 -08:00
JoostK 15f8638b1c fix(ivy): ensure module scope is rebuild on dependent change (#33522)
During incremental compilations, ngtsc needs to know which metadata
from a previous compilation can be reused, versus which metadata has to
be recomputed as some dependency was updated. Changes to
directives/components should cause the NgModule in which they are
declared to be recompiled, as the NgModule's compilation is dependent
on its directives/components.

When a dependent source file of a directive/component is updated,
however, a more subtle dependency should also cause to NgModule's source
file to be invalidated. During the reconciliation of state from a
previous compilation into the new program, the component's source file
is invalidated because one of its dependency has changed, ergo the
NgModule needs to be invalidated as well. Up until now, this implicit
dependency was not imposed on the NgModule. Additionally, any change to
a dependent file may influence the module scope to change, so all
components within the module must be invalidated as well.

This commit fixes the bug by introducing additional file dependencies,
as to ensure a proper rebuild of the module scope and its components.

Fixes #32416

PR Close #33522
2019-11-12 13:56:30 -08:00
JoostK 6899ee5ddd fix(ivy): recompile component when template changes in ngc watch mode (#33551)
When the Angular compiler is operated through the ngc binary in watch
mode, changing a template in an external file would not cause the
component to be recompiled if Ivy is enabled.

There was a problem with how a cached compiler host was present that was
unaware of the changed resources, therefore failing to trigger a
recompilation of a component whenever its template changes. This commit
fixes the issue by ensuring that information about modified resources is
correctly available to the cached compiler host.

Fixes #32869

PR Close #33551
2019-11-12 13:55:09 -08:00
crisbeto e31f62045d perf(ivy): chain listener instructions (#33720)
Chains multiple listener instructions on a particular element into a single call which results in less generated code. Also handles listeners on templates, host listeners and synthetic host listeners.

PR Close #33720
2019-11-12 09:59:13 -08:00
Andrew Scott 7c5c2139ab revert: "fix(ivy): recompile component when template changes in ngc watch mode (#33551)" (#33661)
This reverts commit 8912b11f56.

PR Close #33661
2019-11-07 19:57:56 +00:00
JoostK 8912b11f56 fix(ivy): recompile component when template changes in ngc watch mode (#33551)
When the Angular compiler is operated through the ngc binary in watch
mode, changing a template in an external file would not cause the
component to be recompiled if Ivy is enabled.

There was a problem with how a cached compiler host was present that was
unaware of the changed resources, therefore failing to trigger a
recompilation of a component whenever its template changes. This commit
fixes the issue by ensuring that information about modified resources is
correctly available to the cached compiler host.

Fixes #32869

PR Close #33551
2019-11-07 17:52:58 +00:00
Andrew Kushnir d9a38928f5 fix(ivy): more descriptive errors for nested i18n sections (#33583)
This commit moves nested i18n section detection to an earlier stage where we convert HTML AST to Ivy AST. This also gives a chance to produce better diagnistic message for nested i18n sections, that also includes a file name and location.

PR Close #33583
2019-11-05 17:20:47 +00:00
crisbeto 66725b7b37 perf(ivy): move local references into consts array (#33129)
Follow-up from #32798. Moves the local references array into the component def's `consts` in order to make it compress better.

Before:
```
const _c0 = ['foo', ''];

SomeComp.ngComponentDef = defineComponent({
  template: function() {
    element(0, 'div', null, _c0);
  }
});
```

After:
```
SomeComp.ngComponentDef = defineComponent({
  consts: [['foo', '']],
  template: function() {
    element(0, 'div', null, 0);
  }
});
```

PR Close #33129
2019-11-04 16:30:53 +00:00
Charles Lyding fc8eecad3f fix(compiler-cli): remove unused CLI private exports (#33242)
These exports are no longer used by the CLI since 7.1.0.  Since major versions of the CLI are now locked to major versions of the framework, a CLI user will not be able to use FW 9.0+ on an outdated version (<7.1.0) of the CLI that uses these old APIs.

PR Close #33242
2019-11-01 17:43:47 +00:00
Alex Rickabaugh 38758d856a fix(ivy): don't crash on unknown pipe (#33454)
Previously the compiler would crash if a pipe was encountered which did not
match any pipe in the scope of a template.

This commit introduces a new diagnostic error for unknown pipes instead.

PR Close #33454
2019-10-31 23:43:32 +00:00
Alex Rickabaugh 9db59d010d fix(ivy): don't crash on an unknown localref target (#33454)
Previously the template binder would crash when encountering an unknown
localref (# reference) such as `<div #ref="foo">` when no directive has
`exportAs: "foo"`.

With this commit, the compiler instead generates a template diagnostic error
informing the user about the invalid reference.

PR Close #33454
2019-10-31 23:43:32 +00:00
Pete Bacon Darwin 1d141a8ab1 fix(compiler-cli): attach the correct `viaModule` to namespace imports (#33495)
Previously declarations that were imported via a namespace import
were given the same `bestGuessOwningModule` as the context
where they were imported to. This causes problems with resolving
`ModuleWithProviders` that have a type that has been imported in
this way, causing errors like:

```
ERROR in Symbol UIRouterModule declared in
.../@uirouter/angular/uiRouterNgModule.d.ts
is not exported from
.../@uirouter/angular/uirouter-angular.d.ts
(import into .../src/app/child.module.ts)
```

This commit modifies the `TypescriptReflectionHost.getDirectImportOfIdentifier()`
method so that it also understands how to attach the correct `viaModule` to
the identifier of the namespace import.

Resolves #32166

PR Close #33495
2019-10-31 22:25:48 +00:00
crisbeto c3e93564d0 perf(ivy): avoid generating selectors array for directives without a selector (#33431)
Now that we've replaced `ngBaseDef` with an abstract directive definition, there are a lot more cases where we generate a directive definition without a selector. These changes make it so that we don't generate the `selectors` array if it's going to be empty.

PR Close #33431
2019-10-29 12:06:15 -07:00
crisbeto 14c4b1b205 refactor(ivy): remove ngBaseDef (#33264)
Removes `ngBaseDef` from the compiler and any runtime code that was still referring to it. In the cases where we'd previously generate a base def we now generate a definition for an abstract directive.

PR Close #33264
2019-10-25 13:11:34 -07:00
JoostK 8d15bfa6ee fix(ivy): allow abstract directives to have an invalid constructor (#32987)
For abstract directives, i.e. directives without a selector, it may
happen that their constructor is called explicitly from a subclass,
hence its parameters are not required to be valid for Angular's DI
purposes. Prior to this commit however, having an abstract directive
with a constructor that has parameters that are not eligible for
Angular's DI would produce a compilation error.

A similar scenario may occur for `@Injectable`s, where an explicit
`use*` definition allows for the constructor to be irrelevant. For
example, the situation where `useFactory` is specified allows for the
constructor to be called explicitly with any value, so its constructor
parameters are not required to be valid. For `@Injectable`s this is
handled by generating a DI factory function that throws.

This commit implements the same solution for abstract directives, such
that a compilation error is avoided while still producing an error at
runtime if the type is instantiated implicitly by Angular's DI
mechanism.

Fixes #32981

PR Close #32987
2019-10-25 12:13:23 -07:00
Matias Niemelä dcdb433b7d perf(ivy): apply [style]/[class] bindings directly to style/className (#33336)
This patch ensures that the `[style]` and `[class]` based bindings
are directly applied to an element's style and className attributes.

This patch optimizes the algorithm so that it...
- Doesn't construct an update an instance of `StylingMapArray` for
  `[style]` and `[class]` bindings
- Doesn't apply `[style]` and `[class]` based entries using
  `classList` and `style` (direct attributes are used instead)
- Doesn't split or iterate over all string-based tokens in a
  string value obtained from a `[class]` binding.

This patch speeds up the following cases:
- `<div [class]>` and `<div class="..." [class]>`
- `<div [style]>` and `<div style="..." [style]>`

The overall speec increase is by over 5x.

PR Close #33336
2019-10-24 17:42:46 -07:00
JoostK 0d9be22023 feat(ivy): strictness flags for template type checking (#33365)
The template type checking abilities of the Ivy compiler are far more
advanced than the level of template type checking that was previously
done for Angular templates. Up until now, a single compiler option
called "fullTemplateTypeCheck" was available to configure the level
of template type checking. However, now that more advanced type checking
is being done, new errors may surface that were previously not reported,
in which case it may not be feasible to fix all new errors at once.

Having only a single option to disable a large number of template type
checking capabilities does not allow for incrementally addressing newly
reported types of errors. As a solution, this commit introduces some new
compiler options to be able to enable/disable certain kinds of template
type checks on a fine-grained basis.

PR Close #33365
2019-10-24 16:16:14 -07:00
JoostK 4aa51b751b feat(ivy): verify whether TypeScript version is supported (#33377)
During the creation of an Angular program in the compiler, a check is
done to verify whether the version of TypeScript is considered
supported, producing an error if it is not. This check was missing in
the Ivy compiler, so users may have ended up running an unsupported
TypeScript version inadvertently.

Resolves FW-1643

PR Close #33377
2019-10-24 15:46:23 -07:00
JoostK a42057d0f8 fix(ivy): support abstract directives in template type checking (#33131)
Recently it was made possible to have a directive without selector,
which are referred to as abstract directives. Such directives should not
be registered in an NgModule, but can still contain decorators for
inputs, outputs, queries, etc. The information from these decorators and
the `@Directive()` decorator itself needs to be registered with the
central `MetadataRegistry` so that other areas of the compiler can
request information about a given directive, an example of which is the
template type checker that needs to know about the inputs and outputs of
directives.

Prior to this change, however, abstract directives would only register
themselves with the `MetadataRegistry` as being an abstract directive,
without all of its other metadata like inputs and outputs. This meant
that the template type checker was unable to resolve the inputs and
outputs of these abstract directives, therefore failing to check them
correctly. The typical error would be that some property does not exist
on a DOM element, whereas said property should have been bound to the
abstract directive's input.

This commit fixes the problem by always registering the metadata of a
directive or component with the `MetadataRegistry`. Tests have been
added to ensure abstract directives are handled correctly in the
template type checker, together with tests to verify the form of
abstract directives in declaration files.

Fixes #30080

PR Close #33131
2019-10-24 12:44:30 -07:00
Alex Rickabaugh f1269d98dc feat(ivy): input type coercion for template type-checking (#33243)
Often the types of an `@Input`'s field don't fully reflect the types of
assignable values. This can happen when an input has a getter/setter pair
where the getter always returns a narrow type, and the setter coerces a
wider value down to the narrow type.

For example, you could imagine an input of the form:

```typescript
@Input() get value(): string {
  return this._value;
}

set value(v: {toString(): string}) {
  this._value = v.toString();
}
```

Here, the getter always returns a `string`, but the setter accepts any value
that can be `toString()`'d, and coerces it to a string.

Unfortunately TypeScript does not actually support this syntax, and so
Angular users are forced to type their setters as narrowly as the getters,
even though at runtime the coercion works just fine.

To support these kinds of patterns (e.g. as used by Material), this commit
adds a compiler feature called "input coercion". When a binding is made to
the 'value' input of a directive like MatInput, the compiler will look for a
static field with the name ngAcceptInputType_value. If such a field is found
the type-checking expression for the input will use the static field's type
instead of the type for the @Input field,allowing for the expression of a
type conversion between the binding expression and the value being written
to the input's field.

To solve the case above, for example, MatInput might write:

```typescript
class MatInput {
  // rest of the directive...

  static ngAcceptInputType_value: {toString(): string};
}
```

FW-1475 #resolve

PR Close #33243
2019-10-24 09:49:38 -07:00
Paul Gschwendtner 355e54a410 fix(compiler): do not throw when using abstract directive from other compilation unit (#33347)
Libraries can expose directive/component base classes that will be
used by consumer applications. Using such a base class from another
compilation unit works fine with "ngtsc", but when using "ngc", the
compiler will thrown an error saying that the base class is not
part of a NgModule. e.g.

```
Cannot determine the module for class X in Y! Add X to the NgModule to fix it.
```

This seems to be because the logic for distinguishing directives from
abstract directives is scoped to the current compilation unit within
ngc. This causes abstract directives from other compilation units to
be considered as actual directives (causing the exception).

PR Close #33347
2019-10-23 11:59:24 -07:00
Pete Bacon Darwin 5d86e4a9b1 fix(compiler): ensure that legacy ids are rendered for ICUs (#33318)
When computing i18n messages for templates there are two passes.
This is because messages must be computed before any whitespace
is removed. Then on a second pass, the messages must be recreated
but reusing the message ids from the first pass.

Previously ICUs were losing their legacy ids that had been computed
via the first pass. This commit fixes that by keeping track of the
message from the first pass (`previousMessage`) for ICU placeholder
nodes.

// FW-1637

PR Close #33318
2019-10-22 13:30:16 -04:00
Alex Rickabaugh c4733c15c0 feat(ivy): enable re-export of the compilation scope of NgModules privately (#33177)
This commit refactors the aliasing system to support multiple different
AliasingHost implementations, which control specific aliasing behavior
in ngtsc (see the README.md).

A new host is introduced, the `PrivateExportAliasingHost`. This solves a
longstanding problem in ngtsc regarding support for "monorepo" style private
libraries. These are libraries which are compiled separately from the main
application, and depended upon through TypeScript path mappings. Such
libraries are frequently not in the Angular Package Format and do not have
entrypoints, but rather make use of deep import style module specifiers.
This can cause issues with ngtsc's ability to import a directive given the
module specifier of its NgModule.

For example, if the application uses a directive `Foo` from such a library
`foo`, the user might write:

```typescript
import {FooModule} from 'foo/module';
```

In this case, foo/module.d.ts is path-mapped into the program. Ordinarily
the compiler would see this as an absolute module specifier, and assume that
the `Foo` directive can be imported from the same specifier. For such non-
APF libraries, this assumption fails. Really `Foo` should be imported from
the file which declares it, but there are two problems with this:

1. The compiler would have to reverse the path mapping in order to determine
   a path-mapped path to the file (maybe foo/dir.d.ts).
2. There is no guarantee that the file containing the directive is path-
   mapped in the program at all.

The compiler would effectively have to "guess" 'foo/dir' as a module
specifier, which may or may not be accurate depending on how the library and
path mapping are set up.

It's strongly desirable that the compiler not break its current invariant
that the module specifier given by the user for the NgModule is always the
module specifier from which directives/pipes are imported. Thus, for any
given NgModule from a particular module specifier, it must always be
possible to import any directives/pipes from the same specifier, no matter
how it's packaged.

To make this possible, when compiling a file containing an NgModule, ngtsc
will automatically add re-exports for any directives/pipes not yet exported
by the user, with a name of the form: ɵngExportɵModuleNameɵDirectiveName

This has several effects:

1. It guarantees anyone depending on the NgModule will be able to import its
   directives/pipes from the same specifier.
2. It maintains a stable name for the exported symbol that is safe to depend
   on from code on NPM. Effectively, this private exported name will be a
   part of the package's .d.ts API, and cannot be changed in a non-breaking
   fashion.

Fixes #29361
FW-1610 #resolve

PR Close #33177
2019-10-22 13:14:31 -04:00
Matias Niemelä c0ebecf54d revert: feat(ivy): input type coercion for template type-checking (#33243) (#33299)
This reverts commit 1b4eaea6d4.

PR Close #33299
2019-10-21 12:00:24 -04:00
Alex Rickabaugh 1b4eaea6d4 feat(ivy): input type coercion for template type-checking (#33243)
Often the types of an `@Input`'s field don't fully reflect the types of
assignable values. This can happen when an input has a getter/setter pair
where the getter always returns a narrow type, and the setter coerces a
wider value down to the narrow type.

For example, you could imagine an input of the form:

```typescript
@Input() get value(): string {
  return this._value;
}

set value(v: {toString(): string}) {
  this._value = v.toString();
}
```

Here, the getter always returns a `string`, but the setter accepts any value
that can be `toString()`'d, and coerces it to a string.

Unfortunately TypeScript does not actually support this syntax, and so
Angular users are forced to type their setters as narrowly as the getters,
even though at runtime the coercion works just fine.

To support these kinds of patterns (e.g. as used by Material), this commit
adds a compiler feature called "input coercion". When a binding is made to
the 'value' input of a directive like MatInput, the compiler will look for a
static function with the name ngCoerceInput_value. If such a function is
found, the type-checking expression for the input will be wrapped in a call
to the function, allowing for the expression of a type conversion between
the binding expression and the value being written to the input's field.

To solve the case above, for example, MatInput might write:

```typescript
class MatInput {
  // rest of the directive...

  static ngCoerceInput_value(value: {toString(): string}): string {
    return null!;
  }
}
```

FW-1475 #resolve

PR Close #33243
2019-10-21 11:25:07 -04:00
Alex Rickabaugh d4db746898 feat(ivy): give shim generation its own compiler options (#33256)
As a hack to get the Ivy compiler ngtsc off the ground, the existing
'allowEmptyCodegenFiles' option was used to control generation of ngfactory
and ngsummary shims during compilation. This option was selected since it's
enabled in google3 but never enabled in external projects.

As ngtsc is now mature and the role shims play in compilation is now better
understood across the ecosystem, this commit introduces two new compiler
options to control shim generation:

* generateNgFactoryShims controls the generation of .ngfactory shims.
* generateNgSummaryShims controls the generation of .ngsummary shims.

The 'allowEmptyCodegenFiles' option is still honored if either of the above
flags are not set explicitly.

PR Close #33256
2019-10-21 11:24:26 -04:00
crisbeto 0e08ad628a fix(ivy): throw better error for missing generic type in ModuleWithProviders (#33187)
Currently if a `ModuleWithProviders` is missng its generic type, we throw a cryptic error like:

```
error TS-991010: Value at position 3 in the NgModule.imports of TodosModule is not a reference: [object Object]
```

These changes add a better error to make it easier to debug.

PR Close #33187
2019-10-18 14:49:54 -04:00
JoostK 6958d11d95 feat(ivy): type checking of event bindings (#33125)
Until now, the template type checker has not checked any of the event
bindings that could be present on an element, for example

```
<my-cmp
  (changed)="handleChange($event)"
  (click)="handleClick($event)"></my-cmp>
```

has two event bindings: the `change` event corresponding with an
`@Output()` on the `my-cmp` component and the `click` DOM event.

This commit adds functionality to the template type checker in order to
type check both kind of event bindings. This means that the correctness
of the bindings expressions, as well as the type of the `$event`
variable will now be taken into account during template type checking.

Resolves FW-1598

PR Close #33125
2019-10-18 14:41:53 -04:00
Igor Minar 86e1e6c082 feat: typescript 3.6 support (#32946)
BREAKING CHANGE: typescript 3.4 and 3.5 are no longer supported, please update to typescript 3.6

Fixes #32380

PR Close #32946
2019-10-18 13:15:16 -04:00
crisbeto 9d54679e66 test: clean up explicit dynamic query usages (#33015)
Cleans up all the places where we explicitly set `static: false` on queries.

PR Close #33015
2019-10-17 16:10:10 -04:00
Andrew Kushnir 7e64bbe5a8 fix(ivy): use container i18n meta if a message is a single ICU (#33191)
Prior to this commit, metadata defined on ICU container element was not inherited by the ICU if the whole message is a single ICU (for example: `<ng-container i18n="meaning|description@@id">{count, select, ...}</ng-container>). This commit updates the logic to use parent container i18n meta information for the cases when a message consists of a single ICU.

Fixes #33171

PR Close #33191
2019-10-17 16:07:07 -04:00
Kara Erickson 86104b82b8 refactor(core): rename ngInjectableDef to ɵprov (#33151)
Injectable defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.

This commit adds the prefix and shortens the name from
ngInjectableDef to "prov" (for "provider", since injector defs
are known as "inj"). This is because property names cannot
be minified by Uglify without turning on property mangling
(which most apps have turned off) and are thus size-sensitive.

PR Close #33151
2019-10-16 16:36:19 -04:00
Kara Erickson cda9248b33 refactor(core): rename ngInjectorDef to ɵinj (#33151)
Injector defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.

This commit adds the prefix and shortens the name from
ngInjectorDef to inj. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.

PR Close #33151
2019-10-16 16:36:19 -04:00
Pete Bacon Darwin ad72c90447 fix(ivy): i18n - add XLIFF aliases for legacy message id support (#33160)
The `legacyMessageIdFormat` is taken from the `i18nInFormat` property but we were only considering
`xmb`, `xlf` and `xlf2` values.

The CLI also supports `xliff` and `xliff2` values for the
`i18nInFormat`.

This commit adds support for those aliases.

PR Close #33160
2019-10-15 21:04:17 +00:00
Kara Erickson fc93dafab1 refactor(core): rename ngModuleDef to ɵmod (#33142)
Module defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.

This commit adds the prefix and shortens the name from
ngModuleDef to mod. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.

PR Close #33142
2019-10-14 23:08:10 +00:00
Kara Erickson d62eff7316 refactor(core): rename ngPipeDef to ɵpipe (#33142)
Pipe defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.

This commit adds the prefix and shortens the name from
ngPipeDef to pipe. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.

PR Close #33142
2019-10-14 23:08:10 +00:00
Kara Erickson 0de2a5e408 refactor(core): rename ngFactoryDef to ɵfac (#33116)
Factory defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.

This commit adds the prefix and shortens the name from
ngFactoryDef to fac. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.

Note that the other "defs" (ngPipeDef, etc) will be
prefixed and shortened in follow-up PRs, in an attempt to
limit how large and conflict-y this change is.

PR Close #33116
2019-10-14 20:27:25 +00:00
JoostK cd7b199219 feat(ivy): check regular attributes that correspond with directive inputs (#33066)
Prior to this change, a static attribute that corresponds with a
directive's input would not be type-checked against the type of the
input. This is unfortunate, as a static value always has type `string`,
whereas the directive's input type might be something different. This
typically occurs when a developer forgets to enclose the attribute name
in brackets to make it a property binding.

This commit lets static attributes be considered as bindings with string
values, so that they will be properly type-checked.

PR Close #33066
2019-10-14 20:25:20 +00:00
JoostK 50bf17aca0 fix(ivy): do not always accept `undefined` for directive inputs (#33066)
Prior to this change, the template type checker would always allow a
value of type `undefined` to be passed into a directive's inputs, even
if the input's type did not allow for it. This was due to how the type
constructor for a directive was generated, where a `Partial` mapped
type was used to allow for inputs to be unset. This essentially
introduces the `undefined` type as acceptable type for all inputs.

This commit removes the `Partial` type from the type constructor, which
means that we can no longer omit any properties that were unset.
Instead, any properties that are not set will still be included in the
type constructor call, having their value assigned to `any`.

Before:

```typescript
class NgForOf<T> {
  static ngTypeCtor<T>(init: Partial<Pick<NgForOf<T>,
    'ngForOf'|'ngForTrackBy'|'ngForTemplate'>>): NgForOf<T>;
}

NgForOf.ngTypeCtor(init: {ngForOf: ['foo', 'bar']});
```

After:

```typescript
class NgForOf<T> {
  static ngTypeCtor<T>(init: Pick<NgForOf<T>,
    'ngForOf'|'ngForTrackBy'|'ngForTemplate'>): NgForOf<T>;
}

NgForOf.ngTypeCtor(init: {
  ngForOf: ['foo', 'bar'],
  ngForTrackBy: null as any,
  ngForTemplate: null as any,
});
```

This change only affects generated type check code, the generated
runtime code is not affected.

Fixes #32690
Resolves FW-1606

PR Close #33066
2019-10-14 20:25:20 +00:00
Andrius 39587ad127 fix(compiler-cli): resolve type of exported *ngIf variable. (#33016)
Currently, method `getVarDeclarations()` does not try to resolve the type of
exported variable from *ngIf directive. It always returns `any` type.
By resolving the real type of exported variable, it is now possible to use this
type information in language service and provide completions, go to definition
and quick info functionality in expressions that use exported variable.
Also language service will provide more accurate diagnostic errors during
development.

PR Close #33016
2019-10-14 20:24:43 +00:00
Kara Erickson 1a67d70bf8 refactor(core): rename ngDirectiveDef to ɵdir (#33110)
Directive defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.

This commit adds the prefix and shortens the name from
ngDirectiveDef to dir. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.

Note that the other "defs" (ngFactoryDef, etc) will be
prefixed and shortened in follow-up PRs, in an attempt to
limit how large and conflict-y this change is.

PR Close #33110
2019-10-14 16:20:11 +00:00
JoostK d8249d1230 feat(ivy): better error messages for unknown components (#33064)
For elements in a template that look like custom elements, i.e.
containing a dash in their name, the template type checker will now
issue an error with instructions on how the resolve the issue.
Additionally, a property binding to a non-existent property will also
produce a more descriptive error message.

Resolves FW-1597

PR Close #33064
2019-10-14 16:19:13 +00:00
Kara Erickson 64fd0d6db9 refactor(core): rename ngComponentDef to ɵcmp (#33088)
Component defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.

This commit adds the prefix and shortens the name from
`ngComponentDef` to `cmp`. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.

Note that the other "defs" (ngDirectiveDef, etc) will be
prefixed and shortened in follow-up PRs, in an attempt to
limit how large and conflict-y this change is.

PR Close #33088
2019-10-11 15:45:22 -07:00
Andrius 2ddc851090 fix(compiler-cli): produce diagnostic messages in expression of PrefixNot node. (#33087)
PR Close #33087
2019-10-10 15:25:46 -07:00
Pete Bacon Darwin f640a4a494 fix(ivy): i18n - turn on legacy message-id support by default (#33053)
For v9 we want the migration to the new i18n to be as
simple as possible.

Previously the developer had to positively choose to use
legacy messsage id support in the case that their translation
files had not been migrated to the new format by setting the
`legacyMessageIdFormat` option in tsconfig.json to the format
of their translation files.

Now this setting has been changed to `enableI18nLegacyMessageFormat`
as is a boolean that defaults to `true`. The format is then read from
the `i18nInFormat` option, which was previously used to trigger translations
in the pre-ivy angular compiler.

PR Close #33053
2019-10-10 13:58:30 -07:00
crisbeto d5b87d32b0 perf(ivy): move attributes array into component def (#32798)
Currently Ivy stores the element attributes into an array above the component def and passes it into the relevant instructions, however the problem is that upon minification the array will get a unique name which won't compress very well. These changes move the attributes array into the component def and pass in the index into the instructions instead.

Before:
```
const _c0 = ['foo', 'bar'];

SomeComp.ngComponentDef = defineComponent({
  template: function() {
    element(0, 'div', _c0);
  }
});
```

After:
```
SomeComp.ngComponentDef = defineComponent({
  consts: [['foo', 'bar']],
  template: function() {
    element(0, 'div', 0);
  }
});
```

A couple of cases that this PR doesn't handle:
* Template references are still in a separate array.
* i18n attributes are still in a separate array.

PR Close #32798
2019-10-09 13:16:55 -07:00
Pete Bacon Darwin bcbf3e4123 feat(ivy): i18n - render legacy message ids in `$localize` if requested (#32937)
The `$localize` library uses a new message digest function for
computing message ids. This means that translations in legacy
translation files will no longer match the message ids in the code
and so will not be translated.

This commit adds the ability to specify the format of your legacy
translation files, so that the appropriate message id can be rendered
in the `$localize` tagged strings. This results in larger code size
and requires that all translations are in the legacy format.

Going forward the developer should migrate their translation files
to use the new message id format.

PR Close #32937
2019-10-03 12:12:55 -07:00
Pete Bacon Darwin 9188751adc fix(ivy): i18n - do not render message ids unnecessarily (#32867)
In an attempt to be compatible with previous translation files
the Angular compiler was generating instructions that always
included the message id. This was because it was not possible
to accurately re-generate the id from the calls to `$localize()` alone.

In line with https://hackmd.io/EQF4_-atSXK4XWg8eAha2g this
commit changes the compiler so that it only renders ids if they are
"custom" ones provided by the template author.

NOTE:

When translating messages generated by the Angular compiler
from i18n tags in templates, the `$localize.translate()` function
will compute message ids, if no custom id is provided, using a
common digest function that only relies upon the information
available in the `$localize()` calls.

This computed message id will not be the same as the message
ids stored in legacy translation files. Such files will need to be
migrated to use the new common digest function.

This only affects developers who have been trialling `$localize`, have
been calling `loadTranslations()`, and are not exclusively using custom
ids in their templates.

PR Close #32867
2019-10-02 14:52:00 -07:00
Pete Bacon Darwin d24ade91b8 fix(ivy): i18n - support colons in $localize metadata (#32867)
Metadata blocks are delimited by colons. Previously the code naively just
looked for the next colon in the string as the end marker.

This commit supports escaping colons within the metadata content.
The Angular compiler has been updated to add escaping as required.

PR Close #32867
2019-10-02 14:52:00 -07:00
crisbeto 4e35e348af refactor(ivy): generate ngFactoryDef for injectables (#32433)
With #31953 we moved the factories for components, directives and pipes into a new field called `ngFactoryDef`, however I decided not to do it for injectables, because they needed some extra logic. These changes set up the `ngFactoryDef` for injectables as well.

For reference, the extra logic mentioned above is that for injectables we have two code paths:

1. For injectables that don't configure how they should be instantiated, we create a `factory` that proxies to `ngFactoryDef`:

```
// Source
@Injectable()
class Service {}

// Output
class Service {
  static ngInjectableDef = defineInjectable({
    factory: () => Service.ngFactoryFn(),
  });

  static ngFactoryFn: (t) => new (t || Service)();
}
```

2. For injectables that do configure how they're created, we keep the `ngFactoryDef` and generate the factory based on the metadata:

```
// Source
@Injectable({
  useValue: DEFAULT_IMPL,
})
class Service {}

// Output
export class Service {
  static ngInjectableDef = defineInjectable({
    factory: () => DEFAULT_IMPL,
  });

  static ngFactoryFn: (t) => new (t || Service)();
}
```

PR Close #32433
2019-10-02 13:04:26 -07:00
Andrew Kushnir 966c2a326a fix(ivy): include `ngProjectAs` into attributes array (#32784)
Prior to this commit, the `ngProjectAs` attribute was only included with a special flag and in a parsed format. As a result, projected node was missing `ngProjectAs` attribute as well as other attributes added after `ngProjectAs` one. This is problematic since app code might rely on the presence of `ngProjectAs` attribute (for example in CSS). This commit fixes the problem by including `ngProjectAs` into attributes array as a regular attribute and also makes sure that the parsed version of the `ngProjectAs` attribute with a special marker is added after regular attributes (thus we set them correctly at runtime). This change also aligns View Engine and Ivy behavior.

PR Close #32784
2019-09-27 10:12:18 -07:00
Pete Bacon Darwin b741a1c3e7 fix(ivy): i18n - update the compiler to output `MessageId`s (#32594)
Now that the `$localize` translations are `MessageId` based the
compiler must render `MessageId`s in its generated `$localize` code.
This is because the `MessageId` used by the compiler is computed
from information that does not get passed through to the `$localize`
tagged string.

For example, the generated code for the following template

```html
<div id="static" i18n-title="m|d" title="introduction"></div>
```

will contain these localization statements

```ts
if (ngI18nClosureMode) {
  /**
    * @desc d
    * @meaning m
    */
  const MSG_EXTERNAL_8809028065680254561$$APP_SPEC_TS_1 = goog.getMsg("introduction");
  I18N_1 = MSG_EXTERNAL_8809028065680254561$$APP_SPEC_TS_1;
}
else {
  I18N_1 = $localize \`:m|d@@8809028065680254561:introduction\`;
}
```

Since `$localize` is not able to accurately regenerate the source-message
(and so the `MessageId`) from the generated code, it must rely upon the
`MessageId` being provided explicitly in the generated code.

The compiler now prepends all localized messages with a "metadata block"
containing the id (and the meaning and description if defined).

Note that this metadata block will also allow translation file extraction
from the compiled code - rather than relying on the legacy ViewEngine
extraction code. (This will be implemented post-v9).

Although these metadata blocks add to the initial code size, compile-time
inlining will completely remove these strings and so will not impact on
production bundle size.

PR Close #32594
2019-09-17 09:17:45 -07:00
Matias Niemelä 4f41473048 refactor(ivy): remove styling state storage and introduce direct style writing (#32591)
This patch is a final major refactor in styling Angular.

This PR includes three main fixes:

All temporary state taht is persisted between template style/class application
and style/class application in host bindings is now removed.
Removes the styling() and stylingApply() instructions.
Introduces a "direct apply" mode that is used apply prop-based
style/class in the event that there are no map-based bindings as
well as property collisions.

PR Close #32259

PR Close #32591
2019-09-16 14:12:48 -07:00
Andrew Kushnir 5328bb223a fix(ivy): avoid unnecessary i18n instructions generation for <ng-template> with structural directives (#32623)
If an <ng-template> contains a structural directive (for example *ngIf), Ngtsc generates extra template function with 1 template instruction call. When <ng-template> tag also contains i18n attribute on it, we generate i18nStart and i18nEnd instructions around it, which is unnecessary and breaking runtime. This commit adds a logic to make sure we do not generate i18n instructions in case only `template` is present.

PR Close #32623
2019-09-13 10:01:55 -07:00
Matias Niemelä 53dbff66d7 revert: refactor(ivy): remove styling state storage and introduce direct style writing (#32259)
This reverts commit 15aeab1620.
2019-09-11 15:24:10 -07:00
Matias Niemelä 15aeab1620 refactor(ivy): remove styling state storage and introduce direct style writing (#32259) (#32596)
This patch is a final major refactor in styling Angular.

This PR includes three main fixes:

All temporary state taht is persisted between template style/class application
and style/class application in host bindings is now removed.
Removes the styling() and stylingApply() instructions.
Introduces a "direct apply" mode that is used apply prop-based
style/class in the event that there are no map-based bindings as
well as property collisions.

PR Close #32259

PR Close #32596
2019-09-11 16:27:10 -04:00
Matias Niemelä c84c27f7f4 revert: refactor(ivy): remove styling state storage and introduce direct style writing (#32259) 2019-09-10 18:08:05 -04:00
Matias Niemelä 3b37469735 refactor(ivy): remove styling state storage and introduce direct style writing (#32259)
This patch is a final major refactor in styling Angular.

This PR includes three main fixes:

All temporary state taht is persisted between template style/class application
and style/class application in host bindings is now removed.
Removes the styling() and stylingApply() instructions.
Introduces a "direct apply" mode that is used apply prop-based
style/class in the event that there are no map-based bindings as
well as property collisions.

PR Close #32259
2019-09-10 15:54:58 -04:00
crisbeto 664e0015d4 perf(ivy): replace select instruction with advance (#32516)
Replaces the `select` instruction with a new one called `advance`. Instead of the jumping to a specific index, the new instruction goes forward X amount of elements. The advantage of doing this is that it should generate code the compresses better.

PR Close #32516
2019-09-10 06:30:28 -04:00
Pete Bacon Darwin ea6a2e9f25 fix(ivy): template compiler should render correct $localize placeholder names (#32509)
The `goog.getMsg()` function requires placeholder names to be camelCased.

This is not the case for `$localize`. Here placeholder names need
match what is serialized to translation files.

Specifically such placeholder names keep their casing but have all characters
that are not in `a-z`, `A-Z`, `0-9` and `_` converted to `_`.

PR Close #32509
2019-09-09 19:11:36 -04:00
JoostK a64eded521 fix(ivy): capture template source mapping details during preanalysis (#32544)
Prior to this change, the template source mapping details were always
built during the analysis phase, under the assumption that pre-analysed
templates would always correspond with external templates. This has
turned out to be a false assumption, as inline templates are also
pre-analyzed to be able to preload any stylesheets included in the
template.

This commit fixes the bug by capturing the template source mapping
details at the moment the template is parsed, which is either during the
preanalysis phase when preloading is available, or during the analysis
phase when preloading is not supported.

Tests have been added to exercise the template error mapping in
asynchronous compilations where preloading is enabled, similar to how
the CLI performs compilations.

Fixes #32538

PR Close #32544
2019-09-09 19:10:34 -04:00
Andrew Kushnir f00d03356f fix(ivy): handle expressions in i18n attributes properly (#32309)
Prior to this commit, complex expressions (that require additional statements to be generated) were handled incorrectly in case they were used in attributes annotated with i18n flags. The problem was caused by the fact that extra statements were not appended to the temporary vars block, so they were missing in generated code. This commit updated the logic to use the `convertPropertyBinding`, which contains the necessary code to append extra statements. The `convertExpressionBinding` function was removed as it duplicates the `convertPropertyBinding` one (for the most part) and is no longer used.

PR Close #32309
2019-09-05 13:35:16 -04:00
Pete Bacon Darwin a731119f9f fix(ivy): i18n - do not generate jsdoc comments for `$localize` (#32473)
Previously the template compiler would generate the same jsdoc comment
block for `$localize` as for `goog.getMsg()`. But it turns out that
the closure compiler will complain if the `@desc` and `@meaning`
tags are used for non-`getMsg()` calls.

For now we do not generate the comments for `$localize` calls. They are
not being used at the moment.

In the future it would be good to be able to extract the descriptions and
meanings from the `$localize` calls rather than relying upon the `getMsg()`
calls, which we do now. So we need to find a workaround for this constraint.

PR Close #32473
2019-09-04 15:40:23 -07:00
Pete Bacon Darwin 5d8eb74634 fix(ivy): i18n - handle translated text containing HTML comments (#32475)
Fixes FW-1536

PR Close #32475
2019-09-04 12:48:44 -07:00
Pete Bacon Darwin c024d89448 refactor(ivy): remove `i18nLocalize` instruction (#31609)
This has been replaced by the `$localize` tag.

PR Close #31609
2019-08-30 12:53:26 -07:00
Pete Bacon Darwin fa79f51645 refactor(ivy): update the compiler to emit `$localize` tags (#31609)
This commit changes the Angular compiler (ivy-only) to generate `$localize`
tagged strings for component templates that use `i18n` attributes.

BREAKING CHANGE

Since `$localize` is a global function, it must be included in any applications
that use i18n. This is achieved by importing the `@angular/localize` package
into an appropriate bundle, where it will be executed before the renderer
needs to call `$localize`. For CLI based projects, this is best done in
the `polyfills.ts` file.

```ts
import '@angular/localize';
```

For non-CLI applications this could be added as a script to the index.html
file or another suitable script file.

PR Close #31609
2019-08-30 12:53:26 -07:00
Kristiyan Kostadinov c885178d5f refactor(ivy): move directive, component and pipe factories to ngFactoryFn (#31953)
Reworks the compiler to output the factories for directives, components and pipes under a new static field called `ngFactoryFn`, instead of the usual `factory` property in their respective defs. This should eventually allow us to inject any kind of decorated class (e.g. a pipe).

**Note:** these changes are the first part of the refactor and they don't include injectables. I decided to leave injectables for a follow-up PR, because there's some more cases we need to handle when it comes to their factories. Furthermore, directives, components and pipes make up most of the compiler output tests that need to be refactored and it'll make follow-up PRs easier to review if the tests are cleaned up now.

This is part of the larger refactor for FW-1468.

PR Close #31953
2019-08-27 13:57:00 -07:00
Kara Erickson c3f9893d81 refactor(core): remove innerHTML and outerHTML testing utilities from DomAdapters (#32278)
PR Close #32278
2019-08-26 10:39:09 -07:00
Paul Gschwendtner 4f7c971ee7 fix(ivy): ngtsc throws if "flatModuleOutFile" is set to null (#32235)
In ngc is was valid to set the "flatModuleOutFile" option to "null". This is sometimes
necessary if a tsconfig extends from another one but the "fatModuleOutFile" option
needs to be unset (note that "undefined" does not exist as value in JSON)

Now if ngtsc is used to compile the project, ngtsc will fail with an error because it
tries to do string manipulation on the "flatModuleOutFile". This happens because
ngtsc only skips flat module indices if the option is set to "undefined".

Since this is not compatible with what was supported in ngc and such exceptions
should be avoided, the flat module check is now aligned with ngc.

```
TypeError: Cannot read property 'replace' of null
    at Object.normalizeSeparators (/home/circleci/project/node_modules/@angular/compiler-cli/src/ngtsc/util/src/path.js:35:21)
    at new NgtscProgram (/home/circleci/project/node_modules/@angular/compiler-cli/src/ngtsc/program.js:126:52)
```

Additionally setting the `flatModuleOutFile` option to an empty string
currently results in unexpected behavior. No errors is thrown, but the
flat module index file will be `.ts` (no file name; just extension).

This is now also fixed by treating an empty string similarly to
`null`.

PR Close #32235
2019-08-22 10:14:38 -07:00
Alex Rickabaugh 0677cf0cbe feat(ivy): use the schema registry to check DOM bindings (#32171)
Previously, ngtsc attempted to use the .d.ts schema for HTML elements to
check bindings to DOM properties. However, the TypeScript lib.dom.d.ts
schema does not perfectly align with the Angular DomElementSchemaRegistry,
and these inconsistencies would cause issues in apps. There is also the
concern of supporting both CUSTOM_ELEMENTS_SCHEMA and NO_ERRORS_SCHEMA which
would have been very difficult to do in the existing system.

With this commit, the DomElementSchemaRegistry is employed in ngtsc to check
bindings to the DOM. Previous work on producing template diagnostics is used
to support generation of this different kind of error with the same high
quality of error message.

PR Close #32171
2019-08-22 10:12:45 -07:00
Alex Rickabaugh 0287b234ea feat(ivy): convert all ngtsc diagnostics to ts.Diagnostics (#31952)
Historically, the Angular Compiler has produced both native TypeScript
diagnostics (called ts.Diagnostics) and its own internal Diagnostic format
(called an api.Diagnostic). This was done because TypeScript ts.Diagnostics
cannot be produced for files not in the ts.Program, and template type-
checking diagnostics are naturally produced for external .html template
files.

This design isn't optimal for several reasons:

1) Downstream tooling (such as the CLI) must support multiple formats of
diagnostics, adding to the maintenance burden.

2) ts.Diagnostics have gotten a lot better in recent releases, with support
for suggested changes, highlighting of the code in question, etc. None of
these changes have been of any benefit for api.Diagnostics, which have
continued to be reported in a very primitive fashion.

3) A future plugin model will not support anything but ts.Diagnostics, so
generating api.Diagnostics is a blocker for ngtsc-as-a-plugin.

4) The split complicates both the typings and the testing of ngtsc.

To fix this issue, this commit changes template type-checking to produce
ts.Diagnostics instead. Instead of reporting a special kind of diagnostic
for external template files, errors in a template are always reported in
a ts.Diagnostic that highlights the portion of the template which contains
the error. When this template text is distinct from the source .ts file
(for example, when the template is parsed from an external resource file),
additional contextual information links the error back to the originating
component.

A template error can thus be reported in 3 separate ways, depending on how
the template was configured:

1) For inline template strings which can be directly mapped to offsets in
the TS code, ts.Diagnostics point to real ranges in the source.

This is the case if an inline template is used with a string literal or a
"no-substitution" string. For example:

```typescript
@Component({..., template: `
<p>Bar: {{baz}}</p>
`})
export class TestCmp {
  bar: string;
}
```

The above template contains an error (no 'baz' property of `TestCmp`). The
error produced by TS will look like:

```
<p>Bar: {{baz}}</p>
          ~~~

test.ts:2:11 - error TS2339: Property 'baz' does not exist on type 'TestCmp'. Did you mean 'bar'?
```

2) For template strings which cannot be directly mapped to offsets in the
TS code, a logical offset into the template string will be included in
the error message. For example:

```typescript
const SOME_TEMPLATE = '<p>Bar: {{baz}}</p>';

@Component({..., template: SOME_TEMPLATE})
export class TestCmp {
  bar: string;
}
```

Because the template is a reference to another variable and is not an
inline string constant, the compiler will not be able to use "absolute"
positions when parsing the template. As a result, errors will report logical
offsets into the template string:

```
<p>Bar: {{baz}}</p>
          ~~~

test.ts (TestCmp template):2:15 - error TS2339: Property 'baz' does not exist on type 'TestCmp'.

  test.ts:3:28
    @Component({..., template: TEMPLATE})
                               ~~~~~~~~

    Error occurs in the template of component TestCmp.
```

This error message uses logical offsets into the template string, and also
gives a reference to the `TEMPLATE` expression from which the template was
parsed. This helps in locating the component which contains the error.

3) For external templates (templateUrl), the error message is delivered
within the HTML template file (testcmp.html) instead, and additional
information contextualizes the error on the templateUrl expression from
which the template file was determined:

```
<p>Bar: {{baz}}</p>
          ~~~

testcmp.html:2:15 - error TS2339: Property 'baz' does not exist on type 'TestCmp'.

  test.ts:10:31
    @Component({..., templateUrl: './testcmp.html'})
                                  ~~~~~~~~~~~~~~~~

    Error occurs in the template of component TestCmp.
```

PR Close #31952
2019-08-21 10:51:59 -07:00
Alan 424ab48672 fix(compiler): return enableIvy true when using `readConfiguration` (#32234)
PR Close #32234
2019-08-21 10:06:25 -07:00
Alex Rickabaugh ec4381dd40 feat: make the Ivy compiler the default for ngc (#32219)
This commit switches the default value of the enableIvy flag to true.
Applications that run ngc will now by default receive an Ivy build!

This does not affect the way Bazel builds in the Angular repo work, since
those are still switched based on the value of the --define=compile flag.
Additionally, projects using @angular/bazel still use View Engine builds
by default.

Since most of the Angular repo tests are still written against View Engine
(particularly because we still publish VE packages to NPM), this switch
also requires lots of `enableIvy: false` flags in tsconfigs throughout the
repo.

Congrats to the team for reaching this milestone!

PR Close #32219
2019-08-20 16:41:08 -07:00
atscott cfed0c0cf1 fix(ivy): Support selector-less directive as base classes (#32125)
Following #31379, this adds support for directives without a selector to
Ivy.

PR Close #32125
2019-08-20 09:56:54 -07:00
Alex Rickabaugh 4055150910 feat(compiler): allow selector-less directives as base classes (#31379)
In Angular today, the following pattern works:

```typescript
export class BaseDir {
  constructor(@Inject(ViewContainerRef) protected vcr: ViewContainerRef) {}
}

@Directive({
  selector: '[child]',
})
export class ChildDir extends BaseDir {
  // constructor inherited from BaseDir
}
```

A decorated child class can inherit a constructor from an undecorated base
class, so long as the base class has metadata of its own (for JIT mode).
This pattern works regardless of metadata in AOT.

In Angular Ivy, this pattern does not work: without the @Directive
annotation identifying the base class as a directive, information about its
constructor parameters will not be captured by the Ivy compiler. This is a
result of Ivy's locality principle, which is the basis behind a number of
compilation optimizations.

As a solution, @Directive() without a selector will be interpreted as a
"directive base class" annotation. Such a directive cannot be declared in an
NgModule, but can be inherited from. To implement this, a few changes are
made to the ngc compiler:

* the error for a selector-less directive is now generated when an NgModule
  declaring it is processed, not when the directive itself is processed.
* selector-less directives are not tracked along with other directives in
  the compiler, preventing other errors (like their absence in an NgModule)
  from being generated from them.

PR Close #31379
2019-08-14 12:03:05 -07:00
Keen Yee Liau a91ab15525 fix(language-service): Remove 'context' used for module resolution (#32015)
The language service relies on a "context" file that is used as the
canonical "containing file" when performing module resolution.
This file is unnecessary since the language service host's current
directory always default to the location of tsconfig.json for the
project, which would give the correct result.

This refactoring allows us to simplify the "typescript host" and also
removes the need for custom logic to find tsconfig.json.

PR Close #32015
2019-08-13 11:19:18 -07:00
Kristiyan Kostadinov 4ea3e7e000 refactor(ivy): combine query load instructions (#32100)
Combines the `loadViewQuery` and `loadContentQuery` instructions since they have the exact same internal logic. Based on a discussion here: https://github.com/angular/angular/pull/32067#pullrequestreview-273001730

PR Close #32100
2019-08-12 10:32:08 -07:00
Kara Erickson 37de490e23 Revert "feat(compiler): allow selector-less directives as base classes (#31379)" (#32089)
This reverts commit f90c7a9df0 due to breakages in G3.

PR Close #32089
2019-08-09 18:20:53 -07:00
Pete Bacon Darwin 0ddf0c4895 fix(compiler): do not remove whitespace wrapping i18n expansions (#31962)
Similar to interpolation, we do not want to completely remove whitespace
nodes that are siblings of an expansion.

For example, the following template

```html
<div>
  <strong>items left<strong> {count, plural, =1 {item} other {items}}
</div>
```

was being collapsed to

```html
<div><strong>items left<strong>{count, plural, =1 {item} other {items}}</div>
```

which results in the text looking like

```
items left4
```

instead it should be collapsed to

```html
<div><strong>items left<strong> {count, plural, =1 {item} other {items}}</div>
```

which results in the text looking like

```
items left 4
```

---

**Analysis of the code and manual testing has shown that this does not cause
the generated ids to change, so there is no breaking change here.**

PR Close #31962
2019-08-09 12:03:50 -07:00
Pete Bacon Darwin eb5412d76f fix(ivy): reuse compilation scope for incremental template changes. (#31932)
Previously if only a component template changed then we would know to
rebuild its component source file. But the compilation was incorrect if the
component was part of an NgModule, since we were not capturing the
compilation scope information that had a been acquired from the NgModule
and was not being regenerated since we were not needing to recompile
the NgModule.

Now we register compilation scope information for each component, via the
`ComponentScopeRegistry` interface, so that it is available for incremental
compilation.

The `ComponentDecoratorHandler` now reads the compilation scope from a
`ComponentScopeReader` interface which is implemented as a compound
reader composed of the original `LocalModuleScopeRegistry` and the
`IncrementalState`.

Fixes #31654

PR Close #31932
2019-08-09 10:50:40 -07:00
Alex Rickabaugh f90c7a9df0 feat(compiler): allow selector-less directives as base classes (#31379)
In Angular today, the following pattern works:

```typescript
export class BaseDir {
  constructor(@Inject(ViewContainerRef) protected vcr: ViewContainerRef) {}
}

@Directive({
  selector: '[child]',
})
export class ChildDir extends BaseDir {
  // constructor inherited from BaseDir
}
```

A decorated child class can inherit a constructor from an undecorated base
class, so long as the base class has metadata of its own (for JIT mode).
This pattern works regardless of metadata in AOT.

In Angular Ivy, this pattern does not work: without the @Directive
annotation identifying the base class as a directive, information about its
constructor parameters will not be captured by the Ivy compiler. This is a
result of Ivy's locality principle, which is the basis behind a number of
compilation optimizations.

As a solution, @Directive() without a selector will be interpreted as a
"directive base class" annotation. Such a directive cannot be declared in an
NgModule, but can be inherited from. To implement this, a few changes are
made to the ngc compiler:

* the error for a selector-less directive is now generated when an NgModule
  declaring it is processed, not when the directive itself is processed.
* selector-less directives are not tracked along with other directives in
  the compiler, preventing other errors (like their absence in an NgModule)
  from being generated from them.

PR Close #31379
2019-08-09 10:45:22 -07:00
Igor Minar 6ece7db37a build: TypeScript 3.5 upgrade (#31615)
https://github.com/Microsoft/TypeScript/wiki/Breaking-Changes#typescript-35

PR Close #31615
2019-07-25 17:05:23 -07:00
JoostK 3a2b195a58 feat(ivy): translate type-check diagnostics to their original source (#30181)
PR Close #30181
2019-07-25 16:36:32 -07:00
Ayaz Hafiz 6b67cd5620 feat(ivy): index template references, variables, bound attributes/events (#31535)
Adds support for indexing template referenecs, variables, and property
and method calls inside bound attributes and bound events. This is
mostly an extension of the existing indexing infrastructure.

PR Close #31535
2019-07-25 13:09:10 -07:00
crisbeto 3d7303efc0 perf(ivy): avoid extra parameter in query instructions (#31667)
Currently we always generate the `read` parameter for the view and content query instructions, however since most of the time the `read` parameter won't be set, we'll end up generating `null` which adds 5 bytes for each query when minified. These changes make it so that the `read` parameter only gets generated if it has a value.

PR Close #31667
2019-07-24 14:37:51 -07:00
crisbeto 0aff4a6919 fix(ivy): incorrect ChangeDetectorRef injected into pipes used in component inputs (#31438)
When injecting a `ChangeDetectorRef` into a pipe, the expected result is that the ref will be tied to the component in which the pipe is being used. This works for most cases, however when a pipe is used inside a property binding of a component (see test case as an example), the current `TNode` is pointing to component's host so we end up injecting the inner component's view. These changes fix the issue by only looking up the component view of the `TNode` if the `TNode` is a parent.

This PR resolves FW-1419.

PR Close #31438
2019-07-23 15:46:23 -07:00
Kara Erickson 215ef3c5f4 fix(ivy): ensure NgClass does not overwrite other dir data (#31788)
We currently have a handwritten version of the Ivy directive def for NgClass so
we can switch between Ivy and View Engine behavior. This generated code needs to
be kept up-to-date with what the Ivy compiler generates.

PR 30742 recently changed `classMap` such that it now requires allocation of
host binding slots. This means that the `allocHostVars()` function must be
called in the NgClass directive def to match compiler output, but the
handwritten directive def was not updated. This caused a bug where NgClass
was inappropriately overwriting data for other directives because space was
not allocated for its values.

PR Close #31788
2019-07-22 16:56:27 -07:00
Matias Niemelä 9c954ebc62 refactor(ivy): make styling instructions use the new styling algorithm (#30742)
This commit is the final patch of the ivy styling algorithm refactor.
This patch swaps functionality from the old styling mechanism to the
new refactored code by changing the instruction code the compiler
generates and by pointing the runtime instruction code to the new
styling algorithm.

PR Close #30742
2019-07-19 16:40:40 -07:00
Matt Lewis 4aecf9253b fix(ivy): support older CLI versions that do not pass a list of changed files (#31322)
Versions of CLI prior to angular/angular-cli@0e339ee did not expose the host.getModifiedResourceFiles() method.

This meant that null was being passed through to the IncrementalState.reconcile() method
to indicate that there were either no changes or the host didn't support that method.

This commit fixes a bug where we were checking for undefined rather than null when
deciding whether any resource files had changed, causing a null reference error to be thrown.

This bug was not caught by the unit testing because the tests set up the changed files
via a slightly different process, not having access to the CompilerHost, and these test
were making the erroneous assumption that undefined indicated that there were no
changed files.

PR Close #31322
2019-07-18 14:22:07 -07:00
Paul Gschwendtner 647d7bdd88 refactor: fix typescript strict flag failures in all tests (#30993)
Fixes all TypeScript failures caused by enabling the `--strict`
flag for test source files. We also want to enable the strict
options for tests as the strictness enforcement improves the
overall codehealth, unveiled common issues and additionally it
allows us to enable `strict` in the `tsconfig.json` that is picked
up by IDE's.

PR Close #30993
2019-07-18 14:21:26 -07:00
crisbeto 12fd06916b fix(ivy): don't match directives against attribute bindings (#31541)
Fixes Ivy matching directives against attribute bindings (e.g. `[attr.some-directive]="foo"`). Works by excluding attribute bindings from the attributes array during compilation. This has the added benefit of generating less code.

**Note:** My initial approach to implementing this was to have a different marker for attribute bindings so that they can be ignored when matching directives, however as I was implementing it I realized that the attributes in that array were only used for directive matching (as far as I could tell). I decided to drop the attribute bindings completely, because it results in less generated code.

PR Close #31541
2019-07-16 23:59:13 -04:00
crisbeto 40d785f0a0 perf(ivy): avoid generating extra parameters for host property bindings (#31550)
Currently we reuse the same instruction both for regular property bindings and property bindings on the `host`. The only difference between the two is that when it's on the host we shouldn't support inputs. We have an optional parameter called `nativeOnly` which is used to differentiate the two, however since `nativeOnly` is preceeded by another optional parameter (`sanitizer`), we have to generate two extra parameters for each host property bindings every time (e.g. `property('someProp', 'someValue', null, true)`).

These changes add a new instruction called `hostProperty` which avoids the need for the two parameters by removing `nativeOnly` which is always set and it allows us to omit `sanitizer` when it isn't being used.

These changes also remove the `nativeOnly` parameter from the `updateSyntheticHostBinding` instruction, because it's only generated for host elements which means that we can assume that its value will always be `true`.

PR Close #31550
2019-07-16 13:01:42 -04:00